{"id":"https://openalex.org/W3033171300","doi":"https://doi.org/10.3389/fdata.2020.00019","title":"Reducing Annotation Burden Through Multimodal Learning","display_name":"Reducing Annotation Burden Through Multimodal Learning","publication_year":2020,"publication_date":"2020-06-02","ids":{"openalex":"https://openalex.org/W3033171300","doi":"https://doi.org/10.3389/fdata.2020.00019","mag":"3033171300","pmid":"https://pubmed.ncbi.nlm.nih.gov/33693393","pmcid":"https://www.ncbi.nlm.nih.gov/pmc/articles/7931886"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3389/fdata.2020.00019","pdf_url":"https://www.frontiersin.org/articles/10.3389/fdata.2020.00019/pdf","source":{"id":"https://openalex.org/S4210201220","display_name":"Frontiers in Big Data","issn_l":"2624-909X","issn":["2624-909X"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320527","host_organization_name":"Frontiers Media","host_organization_lineage":["https://openalex.org/P4310320527"],"host_organization_lineage_names":["Frontiers Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.frontiersin.org/articles/10.3389/fdata.2020.00019/pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101879267","display_name":"Kevin Lopez","orcid":"https://orcid.org/0000-0002-2901-5674"},"institutions":[{"id":"https://openalex.org/I32971472","display_name":"Yale University","ror":"https://ror.org/03v76x132","country_code":"US","type":"funder","lineage":["https://openalex.org/I32971472"]}],"countries":["US"],"is_corresponding":true,"raw_author_name":"Kevin Lopez","raw_affiliation_strings":["Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States"],"affiliations":[{"raw_affiliation_string":"Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States","institution_ids":["https://openalex.org/I32971472"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025703949","display_name":"Samah Fodeh","orcid":"https://orcid.org/0000-0003-4664-3143"},"institutions":[{"id":"https://openalex.org/I32971472","display_name":"Yale University","ror":"https://ror.org/03v76x132","country_code":"US","type":"funder","lineage":["https://openalex.org/I32971472"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Samah J. Fodeh","raw_affiliation_strings":["Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, United States"],"affiliations":[{"raw_affiliation_string":"Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, United States","institution_ids":["https://openalex.org/I32971472"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062401184","display_name":"Ahmed Allam","orcid":"https://orcid.org/0000-0003-0871-1977"},"institutions":[{"id":"https://openalex.org/I202697423","display_name":"University of Zurich","ror":"https://ror.org/02crff812","country_code":"CH","type":"funder","lineage":["https://openalex.org/I202697423"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Ahmed Allam","raw_affiliation_strings":["Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland"],"affiliations":[{"raw_affiliation_string":"Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland","institution_ids":["https://openalex.org/I202697423"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038171056","display_name":"Cynthia Brandt","orcid":"https://orcid.org/0000-0001-8179-1796"},"institutions":[{"id":"https://openalex.org/I4210086971","display_name":"VA Connecticut Healthcare System","ror":"https://ror.org/000rgm762","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I1322918889","https://openalex.org/I2799886695","https://openalex.org/I4210086971","https://openalex.org/I4210095851"]},{"id":"https://openalex.org/I32971472","display_name":"Yale University","ror":"https://ror.org/03v76x132","country_code":"US","type":"funder","lineage":["https://openalex.org/I32971472"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Cynthia A. Brandt","raw_affiliation_strings":["Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, United States","VA Connecticut Healthcare System, West Haven, CT, United States"],"affiliations":[{"raw_affiliation_string":"VA Connecticut Healthcare System, West Haven, CT, United States","institution_ids":["https://openalex.org/I4210086971"]},{"raw_affiliation_string":"Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, United States","institution_ids":["https://openalex.org/I32971472"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025057284","display_name":"Michael Krauthammer","orcid":"https://orcid.org/0000-0002-4808-1845"},"institutions":[{"id":"https://openalex.org/I202697423","display_name":"University of Zurich","ror":"https://ror.org/02crff812","country_code":"CH","type":"funder","lineage":["https://openalex.org/I202697423"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Michael Krauthammer","raw_affiliation_strings":["Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland"],"affiliations":[{"raw_affiliation_string":"Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland","institution_ids":["https://openalex.org/I202697423"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5101879267"],"corresponding_institution_ids":["https://openalex.org/I32971472"],"apc_list":{"value":1150,"currency":"USD","value_usd":1150},"apc_paid":{"value":1150,"currency":"USD","value_usd":1150},"fwci":1.299,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":15,"citation_normalized_percentile":{"value":0.782203,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":"3","issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9849,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/multimodal-learning","display_name":"Multimodal learning","score":0.51351696},{"id":"https://openalex.org/keywords/sensor-fusion","display_name":"Sensor Fusion","score":0.44386783}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.69887745},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.6399481},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.62739694},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6182419},{"id":"https://openalex.org/C158525013","wikidata":"https://www.wikidata.org/wiki/Q2593739","display_name":"Fusion","level":2,"score":0.5577237},{"id":"https://openalex.org/C2780660688","wikidata":"https://www.wikidata.org/wiki/Q25052564","display_name":"Multimodal learning","level":2,"score":0.51351696},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4651118},{"id":"https://openalex.org/C33954974","wikidata":"https://www.wikidata.org/wiki/Q486494","display_name":"Sensor fusion","level":2,"score":0.44386783},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32500964},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3389/fdata.2020.00019","pdf_url":"https://www.frontiersin.org/articles/10.3389/fdata.2020.00019/pdf","source":{"id":"https://openalex.org/S4210201220","display_name":"Frontiers in Big Data","issn_l":"2624-909X","issn":["2624-909X"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320527","host_organization_name":"Frontiers Media","host_organization_lineage":["https://openalex.org/P4310320527"],"host_organization_lineage_names":["Frontiers Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/5b3e1cfd1af345668326c736ddc1021d","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931886","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3389/fdata.2020.00019","pdf_url":"https://www.frontiersin.org/articles/10.3389/fdata.2020.00019/pdf","source":{"id":"https://openalex.org/S4210201220","display_name":"Frontiers in Big Data","issn_l":"2624-909X","issn":["2624-909X"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320527","host_organization_name":"Frontiers Media","host_organization_lineage":["https://openalex.org/P4310320527"],"host_organization_lineage_names":["Frontiers Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W114476997","https://openalex.org/W1522301498","https://openalex.org/W1832693441","https://openalex.org/W2028030186","https://openalex.org/W2041646984","https://openalex.org/W2053101950","https://openalex.org/W2063769320","https://openalex.org/W2095705004","https://openalex.org/W2112796928","https://openalex.org/W2152772232","https://openalex.org/W2508743493","https://openalex.org/W2619383789","https://openalex.org/W2886102117","https://openalex.org/W2896911561","https://openalex.org/W2912664121","https://openalex.org/W2922239620","https://openalex.org/W2936762062","https://openalex.org/W2951943225","https://openalex.org/W4232607484"],"related_works":["https://openalex.org/W4390452972","https://openalex.org/W3214791684","https://openalex.org/W3197494161","https://openalex.org/W2726747157","https://openalex.org/W2353265673","https://openalex.org/W2152662039","https://openalex.org/W2145797872","https://openalex.org/W2132659060","https://openalex.org/W2031992971","https://openalex.org/W2010131506"],"abstract_inverted_index":{"Choosing":[0],"an":[1],"optimal":[2],"data":[3,74,102,156],"fusion":[4,23,49,93,124],"technique":[5],"is":[6],"essential":[7],"when":[8],"performing":[9],"machine":[10],"learning":[11,148],"with":[12],"multimodal":[13,22,48,61,77,92,138,147],"data.":[14],"In":[15,36],"this":[16],"study,":[17],"we":[18,39],"examined":[19],"deep":[20],"learning-based":[21],"techniques":[24],"for":[25,153,163],"the":[26,42,58,70,89,114,120,144,151],"combined":[27],"classification":[28,43,84],"of":[29,45,60,72,91,129,146],"radiological":[30],"images":[31],"and":[32,53,66,116,122],"associated":[33],"text":[34],"reports.":[35],"our":[37,141],"analysis,":[38],"(1)":[40],"compared":[41,62],"performance":[44,59],"three":[46],"prototypical":[47],"techniques:":[50],"Early,":[51],"Late,":[52],"Model":[54,121],"fusion,":[55],"(2)":[56],"assessed":[57],"to":[63,81,95,137,149],"unimodal":[64,79,107,132],"learning;":[65],"finally":[67],"(3)":[68],"investigated":[69],"amount":[71,128],"labeled":[73,154],"needed":[75],"by":[76],"versus":[78],"models":[80,133],"yield":[82,96],"comparable":[83,135],"performance.":[85],"Our":[86],"experiments":[87],"demonstrate":[88],"potential":[90,145],"methods":[94],"competitive":[97],"results":[98,136,142],"using":[99,113,119],"less":[100,117],"training":[101,130,155],"(labeled":[103],"data)":[104],"than":[105],"their":[106],"counterparts.":[108],"This":[109],"was":[110],"more":[111],"pronounced":[112],"Early":[115],"so":[118],"Late":[123],"approaches.":[125],"With":[126],"increasing":[127],"data,":[131],"achieved":[134],"models.":[139],"Overall,":[140],"suggest":[143],"decrease":[150],"need":[152],"resulting":[157],"in":[158],"a":[159],"lower":[160],"annotation":[161],"burden":[162],"domain":[164],"experts.":[165]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3033171300","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":3}],"updated_date":"2025-03-18T13:38:52.233847","created_date":"2020-06-12"}