{"id":"https://openalex.org/W3048610712","doi":"https://doi.org/10.3389/fcomp.2020.00035","title":"Dynamic Deep Networks for Retinal Vessel Segmentation","display_name":"Dynamic Deep Networks for Retinal Vessel Segmentation","publication_year":2020,"publication_date":"2020-08-26","ids":{"openalex":"https://openalex.org/W3048610712","doi":"https://doi.org/10.3389/fcomp.2020.00035","mag":"3048610712"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3389/fcomp.2020.00035","pdf_url":"https://www.frontiersin.org/articles/10.3389/fcomp.2020.00035/pdf","source":{"id":"https://openalex.org/S4210211086","display_name":"Frontiers in Computer Science","issn_l":"2624-9898","issn":["2624-9898"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320527","host_organization_name":"Frontiers Media","host_organization_lineage":["https://openalex.org/P4310320527"],"host_organization_lineage_names":["Frontiers Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.frontiersin.org/articles/10.3389/fcomp.2020.00035/pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5028409981","display_name":"Aashis Khanal","orcid":"https://orcid.org/0000-0002-0164-2465"},"institutions":[{"id":"https://openalex.org/I181565077","display_name":"Georgia State University","ror":"https://ror.org/03qt6ba18","country_code":"US","type":"education","lineage":["https://openalex.org/I181565077"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Aashis Khanal","raw_affiliation_strings":["Department of Computer Science, Georgia State University, United States"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Georgia State University, United States","institution_ids":["https://openalex.org/I181565077"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5007594902","display_name":"Rolando Estrada","orcid":"https://orcid.org/0000-0003-1607-2618"},"institutions":[{"id":"https://openalex.org/I181565077","display_name":"Georgia State University","ror":"https://ror.org/03qt6ba18","country_code":"US","type":"education","lineage":["https://openalex.org/I181565077"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rolando Estrada","raw_affiliation_strings":["Department of Computer Science, Georgia State University, United States"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Georgia State University, United States","institution_ids":["https://openalex.org/I181565077"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1150,"currency":"USD","value_usd":1150,"provenance":"doaj"},"apc_paid":{"value":1150,"currency":"USD","value_usd":1150,"provenance":"doaj"},"fwci":5.247,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":52,"citation_normalized_percentile":{"value":0.999952,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"2","issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11438","display_name":"Retinal Imaging and Analysis","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11438","display_name":"Retinal Imaging and Analysis","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12599","display_name":"Retinal and Optic Conditions","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/2731","display_name":"Ophthalmology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10170","display_name":"Retinal Diseases and Treatments","score":0.9902,"subfield":{"id":"https://openalex.org/subfields/2731","display_name":"Ophthalmology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.5349022},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.4301794}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7889211},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.75646615},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7332743},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.6781719},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5660644},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5502569},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.5349022},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.50417006},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.47967649},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.4508859},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.4301794},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37697068},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3389/fcomp.2020.00035","pdf_url":"https://www.frontiersin.org/articles/10.3389/fcomp.2020.00035/pdf","source":{"id":"https://openalex.org/S4210211086","display_name":"Frontiers in Computer Science","issn_l":"2624-9898","issn":["2624-9898"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320527","host_organization_name":"Frontiers Media","host_organization_lineage":["https://openalex.org/P4310320527"],"host_organization_lineage_names":["Frontiers Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1903.07803","pdf_url":"https://arxiv.org/pdf/1903.07803","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3389/fcomp.2020.00035","pdf_url":"https://www.frontiersin.org/articles/10.3389/fcomp.2020.00035/pdf","source":{"id":"https://openalex.org/S4210211086","display_name":"Frontiers in Computer Science","issn_l":"2624-9898","issn":["2624-9898"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320527","host_organization_name":"Frontiers Media","host_organization_lineage":["https://openalex.org/P4310320527"],"host_organization_lineage_names":["Frontiers Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1901129140","https://openalex.org/W1968535857","https://openalex.org/W2001412060","https://openalex.org/W2018639333","https://openalex.org/W2033723371","https://openalex.org/W2036228250","https://openalex.org/W2048316306","https://openalex.org/W2057739630","https://openalex.org/W2060295888","https://openalex.org/W2092126505","https://openalex.org/W2096301059","https://openalex.org/W2112783556","https://openalex.org/W2129698390","https://openalex.org/W2145305441","https://openalex.org/W2149144582","https://openalex.org/W2150769593","https://openalex.org/W2166524747","https://openalex.org/W2174711832","https://openalex.org/W2188292956","https://openalex.org/W2254822129","https://openalex.org/W2494922686","https://openalex.org/W2533865782","https://openalex.org/W2556022279","https://openalex.org/W2604272474","https://openalex.org/W2792263949","https://openalex.org/W2800306316","https://openalex.org/W2896194744","https://openalex.org/W2898910301","https://openalex.org/W2905338897","https://openalex.org/W2963150697","https://openalex.org/W3048610712"],"related_works":["https://openalex.org/W4377865163","https://openalex.org/W4375867731","https://openalex.org/W4295532600","https://openalex.org/W3208304128","https://openalex.org/W3193857078","https://openalex.org/W2888956734","https://openalex.org/W2090985514","https://openalex.org/W2067569035","https://openalex.org/W2063823869","https://openalex.org/W2047973478"],"abstract_inverted_index":{"Deep":[0],"learning":[1,91,172],"has":[2],"recently":[3],"yielded":[4],"impressive":[5],"gains":[6],"in":[7,70,154,196],"retinal":[8,165],"vessel":[9,134],"segmentation.":[10],"However,":[11],"state-of-the-art":[12,161],"methods":[13],"tend":[14,24],"to":[15,25,87,95,128,149,193,223],"be":[16,249],"conservative,":[17],"favoring":[18],"precision":[19,57],"over":[20],"recall.":[21,59],"Thus,":[22],"they":[23],"under-segment":[26],"faint":[27],"vessels,":[28,34],"underestimate":[29],"the":[30,71,93,103,110,118,138,151,155,221,228,235],"width":[31],"of":[32,113,120,141,245],"thicker":[33],"or":[35,135],"even":[36],"miss":[37],"entire":[38],"vessels.":[39],"To":[40],"address":[41],"this":[42,239,246],"limitation,":[43],"we":[44,61,83,101,116,144,200,219,232],"propose":[45],"a":[46,97,146,173,188],"stochastic":[47,81],"training":[48,78,185,210],"scheme":[49],"for":[50,206,238],"deep":[51,64],"neural":[52,189],"networks":[53,65],"that":[54,74,131],"robustly":[55],"balances":[56],"and":[58,123,170,179,231],"First,":[60],"train":[62],"our":[63,114,142],"with":[66,208],"dynamic":[67],"class":[68,197],"weights":[69],"loss":[72],"function":[73],"fluctuate":[75],"during":[76],"each":[77],"iteration.":[79],"This":[80],"approach--which":[82],"believe":[84,201],"is":[85],"applicable":[86],"many":[88],"other":[89],"machine":[90],"problems--forces":[92],"network":[94,148,190],"learn":[96],"balanced":[98],"classification.":[99],"Second,":[100],"decouple":[102],"segmentation":[104,225],"process":[105],"into":[106],"two":[107],"steps.":[108],"In":[109,137,217],"first":[111,222],"half":[112],"pipeline,":[115,143],"estimate":[117],"likelihood":[119],"every":[121],"pixel":[122],"then":[124],"use":[125,145],"these":[126],"likelihoods":[127],"segment":[129],"pixels":[130],"are":[132,220],"clearly":[133],"background.":[136],"latter":[139],"part":[140],"second":[147],"classify":[150],"ambiguous":[152],"regions":[153],"image.":[156],"Our":[157,183],"proposed":[158],"method":[159],"obtained":[160],"results":[162,226],"on":[163,227],"five":[164],"datasets---DRIVE,":[166],"STARE,":[167],"CHASE-DB,":[168],"AV-WIDE,":[169],"VEVIO---by":[171],"robust":[174,192],"balance":[175],"between":[176],"false":[177,180],"positive":[178],"negative":[181],"rates.":[182],"novel":[184],"paradigm":[186],"makes":[187],"more":[191],"inter-sample":[194],"differences":[195],"ratios,":[198],"which":[199],"will":[202],"prove":[203],"particularly":[204],"effective":[205],"settings":[207],"sparse":[209],"data,":[211],"such":[212],"as":[213],"medical":[214],"image":[215],"analysis.":[216],"addition,":[218],"report":[224],"AV-WIDE":[229],"dataset,":[230],"have":[233],"made":[234],"ground-truth":[236],"annotations":[237],"dataset":[240],"publicly":[241],"available.":[242],"An":[243],"implementation":[244],"work":[247],"can":[248],"found":[250],"at":[251],"https://github.com/sraashis/deepdyn.":[252]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3048610712","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":12},{"year":2022,"cited_by_count":19},{"year":2021,"cited_by_count":7},{"year":2020,"cited_by_count":8}],"updated_date":"2024-12-11T11:09:48.427469","created_date":"2020-08-18"}