{"id":"https://openalex.org/W4322628672","doi":"https://doi.org/10.32614/rj-2023-016","title":"BayesPPD: An R Package for Bayesian Sample Size Determination Using the Power and Normalized Power Prior for Generalized Linear Models","display_name":"BayesPPD: An R Package for Bayesian Sample Size Determination Using the Power and Normalized Power Prior for Generalized Linear Models","publication_year":2023,"publication_date":"2023-02-10","ids":{"openalex":"https://openalex.org/W4322628672","doi":"https://doi.org/10.32614/rj-2023-016"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2023-016","pdf_url":"https://journal.r-project.org/articles/RJ-2023-016/RJ-2023-016.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://journal.r-project.org/articles/RJ-2023-016/RJ-2023-016.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5077499851","display_name":"Yueqi Shen","orcid":null},"institutions":[{"id":"https://openalex.org/I114027177","display_name":"University of North Carolina at Chapel Hill","ror":"https://ror.org/0130frc33","country_code":"US","type":"education","lineage":["https://openalex.org/I114027177"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yueqi Shen","raw_affiliation_strings":["University of North Carolina at Chapel Hill"],"affiliations":[{"raw_affiliation_string":"University of North Carolina at Chapel Hill","institution_ids":["https://openalex.org/I114027177"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056185563","display_name":"Matthew A. Psioda","orcid":"https://orcid.org/0000-0002-4450-6981"},"institutions":[{"id":"https://openalex.org/I114027177","display_name":"University of North Carolina at Chapel Hill","ror":"https://ror.org/0130frc33","country_code":"US","type":"education","lineage":["https://openalex.org/I114027177"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Matthew A. Psioda","raw_affiliation_strings":["University of North Carolina at Chapel Hill"],"affiliations":[{"raw_affiliation_string":"University of North Carolina at Chapel Hill","institution_ids":["https://openalex.org/I114027177"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5078399867","display_name":"Joseph G. Ibrahim","orcid":"https://orcid.org/0000-0003-2428-6552"},"institutions":[{"id":"https://openalex.org/I114027177","display_name":"University of North Carolina at Chapel Hill","ror":"https://ror.org/0130frc33","country_code":"US","type":"education","lineage":["https://openalex.org/I114027177"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Joseph G. Ibrahim","raw_affiliation_strings":["University of North Carolina at Chapel Hill"],"affiliations":[{"raw_affiliation_string":"University of North Carolina at Chapel Hill","institution_ids":["https://openalex.org/I114027177"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.53,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":5,"citation_normalized_percentile":{"value":0.590864,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":92},"biblio":{"volume":"14","issue":"4","first_page":"335","last_page":"351"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11235","display_name":"Statistical Methods in Clinical Trials","score":0.9813,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11798","display_name":"Optimal Experimental Design Methods","score":0.9671,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/statistical-power","display_name":"Statistical power","score":0.54153645},{"id":"https://openalex.org/keywords/binomial-distribution","display_name":"Binomial distribution","score":0.52505964}],"concepts":[{"id":"https://openalex.org/C129848803","wikidata":"https://www.wikidata.org/wiki/Q2564360","display_name":"Sample size determination","level":2,"score":0.6450223},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.61495984},{"id":"https://openalex.org/C41587187","wikidata":"https://www.wikidata.org/wiki/Q1501882","display_name":"Generalized linear model","level":2,"score":0.6127612},{"id":"https://openalex.org/C100906024","wikidata":"https://www.wikidata.org/wiki/Q205692","display_name":"Poisson distribution","level":2,"score":0.6007173},{"id":"https://openalex.org/C119043178","wikidata":"https://www.wikidata.org/wiki/Q320723","display_name":"Covariate","level":2,"score":0.57398134},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.55535066},{"id":"https://openalex.org/C96608239","wikidata":"https://www.wikidata.org/wiki/Q1199823","display_name":"Statistical power","level":2,"score":0.54153645},{"id":"https://openalex.org/C41054675","wikidata":"https://www.wikidata.org/wiki/Q185547","display_name":"Binomial distribution","level":2,"score":0.52505964},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.515472},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.48968223},{"id":"https://openalex.org/C33643355","wikidata":"https://www.wikidata.org/wiki/Q5176731","display_name":"Count data","level":3,"score":0.46319193},{"id":"https://openalex.org/C40696583","wikidata":"https://www.wikidata.org/wiki/Q989120","display_name":"Type I and type II errors","level":2,"score":0.4577372},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.44878438},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.43583235},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2023-016","pdf_url":"https://journal.r-project.org/articles/RJ-2023-016/RJ-2023-016.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2112.14616","pdf_url":"https://arxiv.org/pdf/2112.14616","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2023-016","pdf_url":"https://journal.r-project.org/articles/RJ-2023-016/RJ-2023-016.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W1844985714","https://openalex.org/W1973521570","https://openalex.org/W1995224390","https://openalex.org/W1995367986","https://openalex.org/W2002851345","https://openalex.org/W2010622913","https://openalex.org/W2020946357","https://openalex.org/W2023520076","https://openalex.org/W2041996650","https://openalex.org/W2075095321","https://openalex.org/W2081236418","https://openalex.org/W2085234022","https://openalex.org/W2100950823","https://openalex.org/W2134201249","https://openalex.org/W2142795967","https://openalex.org/W2166992787","https://openalex.org/W2327413767","https://openalex.org/W2593056190","https://openalex.org/W2789305398","https://openalex.org/W2810834902","https://openalex.org/W2892315154","https://openalex.org/W3183471713","https://openalex.org/W4399513062","https://openalex.org/W4399514197","https://openalex.org/W4399543173","https://openalex.org/W4399569434","https://openalex.org/W4399570812","https://openalex.org/W4399581013","https://openalex.org/W4399612826","https://openalex.org/W4399648341"],"related_works":["https://openalex.org/W4318718989","https://openalex.org/W4310258465","https://openalex.org/W4226323085","https://openalex.org/W2982191014","https://openalex.org/W2789305398","https://openalex.org/W2171346236","https://openalex.org/W2159796125","https://openalex.org/W2129537379","https://openalex.org/W2042421085","https://openalex.org/W2011680018"],"abstract_inverted_index":{"The":[0,37,75],"R":[1],"package":[2,38,98,127],"BayesPPD":[3,140],"(Bayesian":[4],"Power":[5],"Prior":[6],"Design)":[7],"supports":[8,51,99],"Bayesian":[9,108],"power":[10,25,30,76,88,109],"and":[11,16,27,73,110,122],"type":[12,111],"I":[13,112],"error":[14,113],"calculation":[15],"model":[17],"fitting":[18],"after":[19],"incorporating":[20],"historical":[21,55,62],"data":[22,42,46],"with":[23,47],"the":[24,28,97,100,119,126,137],"prior":[26,31,89],"normalized":[29,87],"for":[32,66,90,106],"generalized":[33],"linear":[34],"models":[35],"(GLM).":[36],"accommodates":[39],"summary":[40],"level":[41,45],"or":[43,81],"subject":[44],"covariate":[48],"information.":[49],"It":[50],"use":[52,101,138],"of":[53,92,102,139],"multiple":[54],"datasets":[56],"as":[57,59,83],"well":[58],"design":[60],"without":[61],"data.":[63],"Supported":[64],"distributions":[65],"responses":[67],"include":[68],"normal,":[69],"binary":[70],"(Bernoulli/binomial),":[71],"Poisson":[72],"exponential.":[74],"parameter":[77],"can":[78],"be":[79],"fixed":[80],"modeled":[82],"random":[84],"using":[85],"a":[86],"each":[91],"these":[93],"distributions.":[94],"In":[95,115],"addition,":[96],"arbitrary":[103],"sampling":[104],"priors":[105],"computing":[107],"rates.":[114],"addition":[116],"to":[117,128],"describing":[118],"statistical":[120],"methodology":[121],"functions":[123],"implemented":[124],"in":[125,141],"enable":[129],"sample":[130],"size":[131],"determination":[132],"(SSD),":[133],"we":[134],"also":[135],"demonstrate":[136],"two":[142],"comprehensive":[143],"case":[144],"studies.":[145]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4322628672","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-07T16:52:10.277310","created_date":"2023-03-01"}