{"id":"https://openalex.org/W3166791263","doi":"https://doi.org/10.32614/rj-2023-015","title":"Bootstrapping Clustered Data in R using lmeresampler","display_name":"Bootstrapping Clustered Data in R using lmeresampler","publication_year":2023,"publication_date":"2023-02-10","ids":{"openalex":"https://openalex.org/W3166791263","doi":"https://doi.org/10.32614/rj-2023-015","mag":"3166791263"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2023-015","pdf_url":"https://journal.r-project.org/articles/RJ-2023-015/RJ-2023-015.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://journal.r-project.org/articles/RJ-2023-015/RJ-2023-015.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5050067968","display_name":"Adam Loy","orcid":"https://orcid.org/0000-0002-5780-4611"},"institutions":[{"id":"https://openalex.org/I188497080","display_name":"Carleton College","ror":"https://ror.org/03jep7677","country_code":"US","type":"education","lineage":["https://openalex.org/I188497080"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Adam Loy","raw_affiliation_strings":["Carleton College"],"affiliations":[{"raw_affiliation_string":"Carleton College","institution_ids":["https://openalex.org/I188497080"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058422610","display_name":"Jenna Korobova","orcid":null},"institutions":[{"id":"https://openalex.org/I188497080","display_name":"Carleton College","ror":"https://ror.org/03jep7677","country_code":"US","type":"education","lineage":["https://openalex.org/I188497080"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jenna Korobova","raw_affiliation_strings":["Carleton College"],"affiliations":[{"raw_affiliation_string":"Carleton College","institution_ids":["https://openalex.org/I188497080"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.241,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":7,"citation_normalized_percentile":{"value":0.798576,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"14","issue":"4","first_page":"103","last_page":"120"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9912,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bootstrapping","display_name":"Bootstrapping (finance)","score":0.9216541},{"id":"https://openalex.org/keywords/resampling","display_name":"Resampling","score":0.8101359}],"concepts":[{"id":"https://openalex.org/C207609745","wikidata":"https://www.wikidata.org/wiki/Q4944086","display_name":"Bootstrapping (finance)","level":2,"score":0.9216541},{"id":"https://openalex.org/C150921843","wikidata":"https://www.wikidata.org/wiki/Q1170431","display_name":"Resampling","level":2,"score":0.8101359},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.7507368},{"id":"https://openalex.org/C44249647","wikidata":"https://www.wikidata.org/wiki/Q208498","display_name":"Confidence interval","level":2,"score":0.6300345},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5870852},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.45531544},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.4113286},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.36534125},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32924977},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3053926},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.28319},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2539875},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2023-015","pdf_url":"https://journal.r-project.org/articles/RJ-2023-015/RJ-2023-015.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2106.06568","pdf_url":"https://arxiv.org/pdf/2106.06568","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2023-015","pdf_url":"https://journal.r-project.org/articles/RJ-2023-015/RJ-2023-015.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W110181434","https://openalex.org/W133496815","https://openalex.org/W1587094587","https://openalex.org/W1832975795","https://openalex.org/W1887050506","https://openalex.org/W1951724000","https://openalex.org/W2023949384","https://openalex.org/W2030769837","https://openalex.org/W2034410940","https://openalex.org/W2044493130","https://openalex.org/W2045443942","https://openalex.org/W2049558150","https://openalex.org/W2051726817","https://openalex.org/W2062809207","https://openalex.org/W2063605818","https://openalex.org/W2067356642","https://openalex.org/W2084007633","https://openalex.org/W2093272448","https://openalex.org/W2096709536","https://openalex.org/W2097168082","https://openalex.org/W2105208711","https://openalex.org/W2109415218","https://openalex.org/W2116116178","https://openalex.org/W2149086733","https://openalex.org/W2149695156","https://openalex.org/W2324392187","https://openalex.org/W2327088997","https://openalex.org/W2397434427","https://openalex.org/W2466830399","https://openalex.org/W2500845915","https://openalex.org/W2582462983","https://openalex.org/W2605868587","https://openalex.org/W3017371728","https://openalex.org/W3086315876","https://openalex.org/W4233458394","https://openalex.org/W4285719527","https://openalex.org/W4299625508","https://openalex.org/W4377097198","https://openalex.org/W4399568367","https://openalex.org/W4399587364"],"related_works":["https://openalex.org/W69222743","https://openalex.org/W4229900761","https://openalex.org/W3194383809","https://openalex.org/W3117246195","https://openalex.org/W2759516091","https://openalex.org/W2375771286","https://openalex.org/W2104720500","https://openalex.org/W1969520669","https://openalex.org/W1958267198","https://openalex.org/W1913467779"],"abstract_inverted_index":{"Linear":[0],"mixed-effects":[1,47],"models":[2,18,48],"are":[3,12,32],"commonly":[4],"used":[5,85],"to":[6,15,86,97],"analyze":[7],"clustered":[8],"data":[9],"structures.":[10],"There":[11],"numerous":[13],"packages":[14],"fit":[16,49],"these":[17],"in":[19],"R":[20],"and":[21,63,70],"conduct":[22],"likelihood-based":[23],"inference.":[24],"The":[25],"implementation":[26],"of":[27,101,103],"resampling-based":[28],"procedures":[29],"for":[30,43,57,66],"inference":[31],"more":[33],"limited.":[34],"In":[35,91],"this":[36,88],"paper,":[37],"we":[38],"introduce":[39],"the":[40],"lmeresampler":[41,93],"package":[42],"bootstrapping":[44],"nested":[45],"linear":[46],"via":[50],"lme4":[51],"or":[52],"nlme.":[53],"Bootstrap":[54],"estimation":[55],"allows":[56],"bias":[58],"correction,":[59],"adjusted":[60],"standard":[61],"errors":[62],"confidence":[64],"intervals":[65],"small":[67],"samples":[68],"sizes":[69],"when":[71],"distributional":[72],"assumptions":[73],"break":[74],"down.":[75],"We":[76],"will":[77],"also":[78],"illustrate":[79],"how":[80],"bootstrap":[81],"resampling":[82],"can":[83],"be":[84],"diagnose":[87],"model":[89,104],"class.":[90],"addition,":[92],"makes":[94],"it":[95],"easy":[96],"construct":[98],"interval":[99],"estimates":[100],"functions":[102],"parameters.":[105]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3166791263","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":2}],"updated_date":"2025-01-18T03:40:47.875699","created_date":"2021-06-22"}