{"id":"https://openalex.org/W4316463995","doi":"https://doi.org/10.32614/rj-2022-049","title":"rbw: An R Package for Constructing Residual Balancing Weights","display_name":"rbw: An R Package for Constructing Residual Balancing Weights","publication_year":2022,"publication_date":"2022-12-20","ids":{"openalex":"https://openalex.org/W4316463995","doi":"https://doi.org/10.32614/rj-2022-049"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-049","pdf_url":"https://journal.r-project.org/articles/RJ-2022-049/RJ-2022-049.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://journal.r-project.org/articles/RJ-2022-049/RJ-2022-049.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5008480116","display_name":"Derick S. Baum","orcid":"https://orcid.org/0000-0001-7539-6749"},"institutions":[{"id":"https://openalex.org/I2801851002","display_name":"Harvard University Press","ror":"https://ror.org/006v7bf86","country_code":"US","type":"other","lineage":["https://openalex.org/I136199984","https://openalex.org/I2801851002"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Derick S. Baum","raw_affiliation_strings":["Harvard University"],"affiliations":[{"raw_affiliation_string":"Harvard University","institution_ids":["https://openalex.org/I2801851002"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5019592106","display_name":"Xiang Zhou","orcid":null},"institutions":[{"id":"https://openalex.org/I2801851002","display_name":"Harvard University Press","ror":"https://ror.org/006v7bf86","country_code":"US","type":"other","lineage":["https://openalex.org/I136199984","https://openalex.org/I2801851002"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiang Zhou","raw_affiliation_strings":["Harvard University"],"affiliations":[{"raw_affiliation_string":"Harvard University","institution_ids":["https://openalex.org/I2801851002"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":"14","issue":"3","first_page":"174","last_page":"192"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10845","display_name":"Advanced Causal Inference Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10845","display_name":"Advanced Causal Inference Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/r-package","display_name":"R package","score":0.4956392},{"id":"https://openalex.org/keywords/marginal-structural-model","display_name":"Marginal structural model","score":0.4530423},{"id":"https://openalex.org/keywords/conditional-probability-distribution","display_name":"Conditional probability distribution","score":0.41066283}],"concepts":[{"id":"https://openalex.org/C119043178","wikidata":"https://www.wikidata.org/wiki/Q320723","display_name":"Covariate","level":2,"score":0.6548376},{"id":"https://openalex.org/C183115368","wikidata":"https://www.wikidata.org/wiki/Q856577","display_name":"Weighting","level":2,"score":0.55564433},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.5420275},{"id":"https://openalex.org/C2984074130","wikidata":"https://www.wikidata.org/wiki/Q73539779","display_name":"R package","level":2,"score":0.4956392},{"id":"https://openalex.org/C2776502983","wikidata":"https://www.wikidata.org/wiki/Q690182","display_name":"Contrast (vision)","level":2,"score":0.47307548},{"id":"https://openalex.org/C26831200","wikidata":"https://www.wikidata.org/wiki/Q16963953","display_name":"Marginal structural model","level":3,"score":0.4530423},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.4518069},{"id":"https://openalex.org/C102366305","wikidata":"https://www.wikidata.org/wiki/Q1097688","display_name":"Nonparametric statistics","level":2,"score":0.44003332},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.4385978},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4343371},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.42663184},{"id":"https://openalex.org/C43555835","wikidata":"https://www.wikidata.org/wiki/Q2300258","display_name":"Conditional probability distribution","level":2,"score":0.41066283},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4059114},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.32681483},{"id":"https://openalex.org/C77350462","wikidata":"https://www.wikidata.org/wiki/Q1125472","display_name":"Confounding","level":2,"score":0.3094717},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.12989515},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-049","pdf_url":"https://journal.r-project.org/articles/RJ-2022-049/RJ-2022-049.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-049","pdf_url":"https://journal.r-project.org/articles/RJ-2022-049/RJ-2022-049.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W1584448881","https://openalex.org/W1622753297","https://openalex.org/W1971464691","https://openalex.org/W2008557562","https://openalex.org/W2009187570","https://openalex.org/W2056621649","https://openalex.org/W2082299845","https://openalex.org/W2110153289","https://openalex.org/W2119085303","https://openalex.org/W2132324013","https://openalex.org/W2132575282","https://openalex.org/W2142495742","https://openalex.org/W2146676275","https://openalex.org/W2154055907","https://openalex.org/W2159300646","https://openalex.org/W2322253843","https://openalex.org/W2585690194","https://openalex.org/W2901067598","https://openalex.org/W3010593173","https://openalex.org/W3102844537","https://openalex.org/W3122812581","https://openalex.org/W4388274684","https://openalex.org/W4399579512","https://openalex.org/W4399587762","https://openalex.org/W4399587853"],"related_works":["https://openalex.org/W4388213054","https://openalex.org/W4213439002","https://openalex.org/W4206042385","https://openalex.org/W2985746494","https://openalex.org/W2923628599","https://openalex.org/W2511384863","https://openalex.org/W2128374225","https://openalex.org/W2096089271","https://openalex.org/W2080773131","https://openalex.org/W1878724292"],"abstract_inverted_index":{"We":[0,131],"describe":[1,137],"the":[2,8,40,48,52,56,68,82,124,133,138],"R":[3],"package":[4],"[rbw](https://CRAN.R-project.org/package=rbw),":[5,141],"which":[6],"implements":[7],"method":[9,69],"of":[10,43,47,51,85,129],"residual":[11],"balancing":[12,33],"weights":[13],"(RBW)":[14],"for":[15,156,165],"estimating":[16],"marginal":[17],"structural":[18],"models.":[19],"In":[20],"contrast":[21],"to":[22,54,62,73,147],"other":[23,112],"methods":[24,113],"such":[25,122],"as":[26,123],"inverse":[27],"probability":[28],"weighting":[29,97],"(IPW)":[30],"and":[31,67,142,162],"covariate":[32],"propensity":[34],"scores":[35],"(CBPS),":[36],"RBW":[37,58,87,104],"involves":[38,99],"modeling":[39,81],"conditional":[41,49,83],"means":[42],"post-treatment":[44],"confounders":[45],"instead":[46],"distributions":[50,84],"treatment":[53],"construct":[55],"weights.":[57],"is":[59,70,88],"thus":[60],"easier":[61],"use":[63,144],"with":[64,168],"continuous":[65],"treatments,":[66,158],"less":[71],"susceptible":[72],"model":[74],"misspecification":[75],"issues":[76],"that":[77],"often":[78],"arise":[79],"when":[80],"treatments.":[86],"also":[89],"advantageous":[90],"from":[91],"a":[92,100,107],"computational":[93],"perspective.":[94],"As":[95],"its":[96],"procedure":[98],"convex":[101],"optimization":[102,115],"problem,":[103],"typically":[105],"locates":[106],"solution":[108],"considerably":[109],"faster":[110],"than":[111],"whose":[114],"relies":[116],"on":[117],"nonconvex":[118],"loss":[119],"functions":[120,139],"---":[121],"recently":[125],"proposed":[126],"nonparametric":[127],"version":[128],"CBPS.":[130],"explain":[132],"rationale":[134],"behind":[135],"RBW,":[136],"in":[140,151],"then":[143],"real-world":[145],"data":[146],"illustrate":[148],"their":[149],"applications":[150],"three":[152],"scenarios:":[153],"effect":[154,163],"estimation":[155,164],"point":[157],"causal":[159],"mediation":[160],"analysis,":[161],"time-varying":[166,169],"treatments":[167],"confounders.":[170]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4316463995","counts_by_year":[],"updated_date":"2024-12-06T23:47:38.505567","created_date":"2023-01-16"}