{"id":"https://openalex.org/W4306661061","doi":"https://doi.org/10.32614/rj-2022-030","title":"TensorTest2D: Fitting Generalized Linear Models with Matrix Covariates","display_name":"TensorTest2D: Fitting Generalized Linear Models with Matrix Covariates","publication_year":2022,"publication_date":"2022-10-10","ids":{"openalex":"https://openalex.org/W4306661061","doi":"https://doi.org/10.32614/rj-2022-030"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-030","pdf_url":"https://journal.r-project.org/articles/RJ-2022-030/RJ-2022-030.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://journal.r-project.org/articles/RJ-2022-030/RJ-2022-030.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101834543","display_name":"Ping-Yang Chen","orcid":"https://orcid.org/0000-0002-9834-3671"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ping-Yang Chen","raw_affiliation_strings":["Chimes AI"],"affiliations":[{"raw_affiliation_string":"Chimes AI","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045275903","display_name":"Hsing-Ming Chang","orcid":"https://orcid.org/0000-0001-6097-0875"},"institutions":[{"id":"https://openalex.org/I91807558","display_name":"National Cheng Kung University","ror":"https://ror.org/01b8kcc49","country_code":"TW","type":"education","lineage":["https://openalex.org/I91807558"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Hsing-Ming Chang","raw_affiliation_strings":["Department of Statistics and Institute of Data Science, National Cheng\nKung University"],"affiliations":[{"raw_affiliation_string":"Department of Statistics and Institute of Data Science, National Cheng\nKung University","institution_ids":["https://openalex.org/I91807558"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100436559","display_name":"Yu\u2010Ting Chen","orcid":"https://orcid.org/0000-0001-9525-8407"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu-Ting Chen","raw_affiliation_strings":["Department of Statistics, Purdue University"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, Purdue University","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041079920","display_name":"Jung-Ying Tzeng","orcid":null},"institutions":[{"id":"https://openalex.org/I137902535","display_name":"North Carolina State University","ror":"https://ror.org/04tj63d06","country_code":"US","type":"education","lineage":["https://openalex.org/I137902535"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jung-Ying Tzeng","raw_affiliation_strings":["Department of Statistics and Bioinformatics Research Center, North\nCarolina State University"],"affiliations":[{"raw_affiliation_string":"Department of Statistics and Bioinformatics Research Center, North\nCarolina State University","institution_ids":["https://openalex.org/I137902535"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5031300943","display_name":"Sheng\u2010Mao Chang","orcid":"https://orcid.org/0000-0003-2785-0155"},"institutions":[{"id":"https://openalex.org/I99613584","display_name":"National Taipei University","ror":"https://ror.org/03e29r284","country_code":"TW","type":"education","lineage":["https://openalex.org/I99613584"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Sheng-Mao Chang","raw_affiliation_strings":["Department of Statistics, National Taipei University"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, National Taipei University","institution_ids":["https://openalex.org/I99613584"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":"14","issue":"2","first_page":"153","last_page":"164"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.7213224},{"id":"https://openalex.org/keywords/lasso","display_name":"Lasso","score":0.6123038},{"id":"https://openalex.org/keywords/design-matrix","display_name":"Design matrix","score":0.5029749}],"concepts":[{"id":"https://openalex.org/C119043178","wikidata":"https://www.wikidata.org/wiki/Q320723","display_name":"Covariate","level":2,"score":0.7845485},{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.7213224},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.69913805},{"id":"https://openalex.org/C37616216","wikidata":"https://www.wikidata.org/wiki/Q3218363","display_name":"Lasso (programming language)","level":2,"score":0.6123038},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5388332},{"id":"https://openalex.org/C151956035","wikidata":"https://www.wikidata.org/wiki/Q1132755","display_name":"Logistic regression","level":2,"score":0.53585565},{"id":"https://openalex.org/C41587187","wikidata":"https://www.wikidata.org/wiki/Q1501882","display_name":"Generalized linear model","level":2,"score":0.53110486},{"id":"https://openalex.org/C155281189","wikidata":"https://www.wikidata.org/wiki/Q3518150","display_name":"Tensor (intrinsic definition)","level":2,"score":0.51039046},{"id":"https://openalex.org/C203233044","wikidata":"https://www.wikidata.org/wiki/Q5264358","display_name":"Design matrix","level":3,"score":0.5029749},{"id":"https://openalex.org/C93959086","wikidata":"https://www.wikidata.org/wiki/Q6888345","display_name":"Model selection","level":2,"score":0.49353373},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4322251},{"id":"https://openalex.org/C48921125","wikidata":"https://www.wikidata.org/wiki/Q10861030","display_name":"Linear regression","level":2,"score":0.42772958},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.40584216},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3850901},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.34968412},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.11234},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-030","pdf_url":"https://journal.r-project.org/articles/RJ-2022-030/RJ-2022-030.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-030","pdf_url":"https://journal.r-project.org/articles/RJ-2022-030/RJ-2022-030.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W2043398720","https://openalex.org/W2110065044","https://openalex.org/W2135046866","https://openalex.org/W2136002544","https://openalex.org/W2138806521","https://openalex.org/W3135863601","https://openalex.org/W4247761930","https://openalex.org/W4294541781","https://openalex.org/W4399513997","https://openalex.org/W4399588187","https://openalex.org/W4399650551"],"related_works":["https://openalex.org/W4386432287","https://openalex.org/W3015383640","https://openalex.org/W3008266953","https://openalex.org/W2735628960","https://openalex.org/W2602386621","https://openalex.org/W2374035137","https://openalex.org/W2289708057","https://openalex.org/W202514634","https://openalex.org/W1631981480","https://openalex.org/W137628093"],"abstract_inverted_index":{"The":[0,137],"[TensorTest2D](https://CRAN.R-project.org/package=TensorTest2D)":[1],"package":[2,19,47],"provides":[3],"the":[4,43,55,66,83,91,108,113,126,152,156],"means":[5],"to":[6,41,64,97,124,154],"fit":[7,96],"generalized":[8],"linear":[9],"models":[10],"on":[11,71,132],"second-order":[12],"tensor":[13,59,101,134],"type":[14],"data.":[15],"Functions":[16],"within":[17],"this":[18],"can":[20,140],"be":[21,142],"used":[22,63,143],"for":[23],"parameter":[24],"estimation":[25],"(e.g.,":[26],"estimating":[27],"regression":[28,60,102,135],"coefficients":[29],"and":[30,34,95],"their":[31],"standard":[32],"deviations)":[33],"hypothesis":[35],"testing.":[36],"We":[37,119],"use":[38],"two":[39,116],"examples":[40],"illustrate":[42],"utility":[44],"of":[45,68,90],"our":[46],"in":[48],"analyzing":[49],"data":[50],"from":[51],"different":[52],"disciplines.":[53],"In":[54,82],"first":[56],"example,":[57,85],"a":[58,72,88,99,122,133],"model":[61],"is":[62,77],"study":[65],"effect":[67],"multi-omics":[69],"predictors":[70],"continuous":[73],"outcome":[74],"variable":[75,147],"which":[76],"associated":[78],"with":[79,145],"drug":[80],"sensitivity.":[81],"second":[84],"we":[86],"draw":[87],"subset":[89],"MNIST":[92],"handwritten":[93,117],"images":[94],"them":[98],"logistic":[100],"model.":[103,136],"A":[104],"significance":[105],"test":[106],"characterizes":[107],"image":[109],"pattern":[110],"that":[111],"tells":[112],"difference":[114],"between":[115],"digits.":[118],"also":[120,141],"provide":[121],"function":[123],"visualize":[125],"areas":[127],"as":[128,151],"effective":[129],"classifiers":[130],"based":[131],"visualization":[138],"tool":[139],"together":[144],"other":[146],"selection":[148,157],"techniques,":[149],"such":[150],"LASSO,":[153],"inform":[155],"results.":[158]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4306661061","counts_by_year":[],"updated_date":"2024-12-09T00:51:17.659025","created_date":"2022-10-18"}