{"id":"https://openalex.org/W4306660753","doi":"https://doi.org/10.32614/rj-2022-024","title":"htestClust: A Package for Marginal Inference of Clustered Data Under Informative Cluster Size","display_name":"htestClust: A Package for Marginal Inference of Clustered Data Under Informative Cluster Size","publication_year":2022,"publication_date":"2022-10-10","ids":{"openalex":"https://openalex.org/W4306660753","doi":"https://doi.org/10.32614/rj-2022-024"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-024","pdf_url":"https://journal.r-project.org/articles/RJ-2022-024/RJ-2022-024.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://journal.r-project.org/articles/RJ-2022-024/RJ-2022-024.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5029377283","display_name":"Mary Gregg","orcid":"https://orcid.org/0000-0003-2991-6939"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mary Gregg","raw_affiliation_strings":["Department of Bioinformatics and Biostatistics"],"affiliations":[{"raw_affiliation_string":"Department of Bioinformatics and Biostatistics","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003292914","display_name":"Somnath Datta","orcid":"https://orcid.org/0000-0003-4381-1842"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Somnath Datta","raw_affiliation_strings":["Department of Biostatistics"],"affiliations":[{"raw_affiliation_string":"Department of Biostatistics","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5056976214","display_name":"D. Lorenz","orcid":"https://orcid.org/0000-0001-8114-0926"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Douglas Lorenz","raw_affiliation_strings":["Department of Bioinformatics and Biostatistics"],"affiliations":[{"raw_affiliation_string":"Department of Bioinformatics and Biostatistics","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.486,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":3,"citation_normalized_percentile":{"value":0.418212,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":80},"biblio":{"volume":"14","issue":"2","first_page":"54","last_page":"66"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13398","display_name":"Data Analysis with R","score":0.9698,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13398","display_name":"Data Analysis with R","score":0.9698,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9628,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9161,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mcnemars-test","display_name":"McNemar's test","score":0.7776978},{"id":"https://openalex.org/keywords/r-package","display_name":"R package","score":0.77366173},{"id":"https://openalex.org/keywords/statistical-inference","display_name":"Statistical Inference","score":0.4679106},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.46392095},{"id":"https://openalex.org/keywords/rank-correlation","display_name":"Rank correlation","score":0.42130673}],"concepts":[{"id":"https://openalex.org/C186282968","wikidata":"https://www.wikidata.org/wiki/Q1434261","display_name":"McNemar's test","level":2,"score":0.7776978},{"id":"https://openalex.org/C2984074130","wikidata":"https://www.wikidata.org/wiki/Q73539779","display_name":"R package","level":2,"score":0.77366173},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.54356635},{"id":"https://openalex.org/C164866538","wikidata":"https://www.wikidata.org/wiki/Q367351","display_name":"Cluster (spacecraft)","level":2,"score":0.51355195},{"id":"https://openalex.org/C87007009","wikidata":"https://www.wikidata.org/wiki/Q210832","display_name":"Statistical hypothesis testing","level":2,"score":0.50803256},{"id":"https://openalex.org/C134261354","wikidata":"https://www.wikidata.org/wiki/Q938438","display_name":"Statistical inference","level":2,"score":0.4679106},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.46392095},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.45130125},{"id":"https://openalex.org/C101601086","wikidata":"https://www.wikidata.org/wiki/Q3753228","display_name":"Rank correlation","level":2,"score":0.42130673},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.41437227},{"id":"https://openalex.org/C117220453","wikidata":"https://www.wikidata.org/wiki/Q5172842","display_name":"Correlation","level":2,"score":0.41036972},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3768146},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3487389},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.18498829},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-024","pdf_url":"https://journal.r-project.org/articles/RJ-2022-024/RJ-2022-024.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-024","pdf_url":"https://journal.r-project.org/articles/RJ-2022-024/RJ-2022-024.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1972769562","https://openalex.org/W2048931622","https://openalex.org/W2050477027","https://openalex.org/W2073366797","https://openalex.org/W2104538371","https://openalex.org/W2118002788","https://openalex.org/W2126377029","https://openalex.org/W2141557714","https://openalex.org/W2151133772","https://openalex.org/W2170335599","https://openalex.org/W2173595270","https://openalex.org/W2207070264","https://openalex.org/W2522964142","https://openalex.org/W2598505388","https://openalex.org/W2626895545","https://openalex.org/W2921301138","https://openalex.org/W3008300278","https://openalex.org/W3033838653","https://openalex.org/W4200347019","https://openalex.org/W4301348524","https://openalex.org/W4399496482"],"related_works":["https://openalex.org/W4367858585","https://openalex.org/W4321447026","https://openalex.org/W4247364450","https://openalex.org/W4226211120","https://openalex.org/W2504417049","https://openalex.org/W2461683294","https://openalex.org/W2380849986","https://openalex.org/W2171342382","https://openalex.org/W1993033667","https://openalex.org/W1987205174"],"abstract_inverted_index":{"When":[0],"observations":[1,10],"are":[2,17,74,132],"collected":[3],"in/organized":[4],"into":[5],"observational":[6,15],"units,":[7],"within":[8,42],"which":[9],"may":[11],"be":[12],"dependent,":[13],"those":[14],"units":[16],"often":[18],"referred":[19],"to":[20,78,103],"as":[21,26],"\\\"clustered\\\"":[22],"and":[23,97,105],"the":[24,50,57,79,124],"data":[25,32,63,76],"\\\"clustered":[27],"data\\\".":[28],"Examples":[29],"of":[30,49,60,119,129],"clustered":[31,62,75],"include":[33],"repeated":[34],"measures":[35],"or":[36],"hierarchical":[37],"shared":[38],"association":[39],"(e.g.,":[40],"individuals":[41],"families).":[43],"This":[44,111],"paper":[45],"provides":[46],"an":[47,114],"overview":[48],"R":[51,125],"package":[52,112,131],"[htestClust](https://CRAN.R-project.org/package=htestClust),":[53],"a":[54],"tool":[55],"for":[56,107],"marginal":[58],"analysis":[59],"such":[61],"with":[64],"potentially":[65],"informative":[66,108],"cluster":[67,109],"and/or":[68],"group":[69],"sizes.":[70],"Contained":[71],"in":[72,123],"htestClust":[73],"analogues":[77],"following":[80],"classical":[81,120],"hypothesis":[82],"tests:":[83],"rank-sum,":[84],"signed":[85],"rank,":[86],"$t$-,":[87],"one-way":[88],"ANOVA,":[89],"F,":[90],"Levene,":[91],"Pearson/Spearman/Kendall":[92],"correlation,":[93],"proportion,":[94],"goodness-of-fit,":[95],"independence,":[96],"McNemar.":[98],"Additional":[99],"functions":[100,122],"allow":[101],"users":[102],"visualize":[104],"test":[106],"size.":[110],"has":[113],"easy-to-use":[115],"interface":[116],"mimicking":[117],"that":[118],"hypothesis-testing":[121],"environment.":[126],"Various":[127],"features":[128],"this":[130],"illustrated":[133],"through":[134],"simple":[135],"examples.":[136]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4306660753","counts_by_year":[{"year":2024,"cited_by_count":3}],"updated_date":"2025-01-08T05:41:57.164797","created_date":"2022-10-18"}