{"id":"https://openalex.org/W3168850057","doi":"https://doi.org/10.32614/rj-2022-012","title":"RFpredInterval: An R Package for Prediction Intervals with Random Forests and Boosted Forests","display_name":"RFpredInterval: An R Package for Prediction Intervals with Random Forests and Boosted Forests","publication_year":2022,"publication_date":"2022-06-21","ids":{"openalex":"https://openalex.org/W3168850057","doi":"https://doi.org/10.32614/rj-2022-012","mag":"3168850057"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-012","pdf_url":"https://journal.r-project.org/articles/RJ-2022-012/RJ-2022-012.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://journal.r-project.org/articles/RJ-2022-012/RJ-2022-012.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5036486763","display_name":"Cansu Alaku\u015f","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cansu Alakus","raw_affiliation_strings":["Department of Decision Sciences"],"affiliations":[{"raw_affiliation_string":"Department of Decision Sciences","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001422267","display_name":"Denis Larocque","orcid":"https://orcid.org/0000-0002-7372-7943"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Denis Larocque","raw_affiliation_strings":["Department of Decision Sciences"],"affiliations":[{"raw_affiliation_string":"Department of Decision Sciences","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5102781431","display_name":"Aur\u00e9lie Labbe","orcid":"https://orcid.org/0009-0008-2182-0637"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Aur\u00e9lie Labbe","raw_affiliation_strings":["Department of Decision Sciences"],"affiliations":[{"raw_affiliation_string":"Department of Decision Sciences","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.324,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.418212,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":80},"biblio":{"volume":"14","issue":"1","first_page":"300","last_page":"320"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13398","display_name":"Data Analysis with R","score":0.992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13398","display_name":"Data Analysis with R","score":0.992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11490","display_name":"Hydrological Forecasting Using AI","score":0.9882,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9873,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/r-package","display_name":"R package","score":0.69357127},{"id":"https://openalex.org/keywords/predictive-modelling","display_name":"Predictive modelling","score":0.5164449},{"id":"https://openalex.org/keywords/prediction-interval","display_name":"Prediction interval","score":0.47696766}],"concepts":[{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.8765599},{"id":"https://openalex.org/C2984074130","wikidata":"https://www.wikidata.org/wiki/Q73539779","display_name":"R package","level":2,"score":0.69357127},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5917454},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.5853977},{"id":"https://openalex.org/C45804977","wikidata":"https://www.wikidata.org/wiki/Q7239673","display_name":"Predictive modelling","level":2,"score":0.5164449},{"id":"https://openalex.org/C103402496","wikidata":"https://www.wikidata.org/wiki/Q1106171","display_name":"Prediction interval","level":2,"score":0.47696766},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4234401},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.41812927},{"id":"https://openalex.org/C167085575","wikidata":"https://www.wikidata.org/wiki/Q6803654","display_name":"Mean squared prediction error","level":2,"score":0.41709042},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.41196078},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.33083487},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3131584},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1890342},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C459310","wikidata":"https://www.wikidata.org/wiki/Q117801","display_name":"Computational science","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-012","pdf_url":"https://journal.r-project.org/articles/RJ-2022-012/RJ-2022-012.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2106.08217","pdf_url":"https://arxiv.org/pdf/2106.08217","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-012","pdf_url":"https://journal.r-project.org/articles/RJ-2022-012/RJ-2022-012.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Life on land","score":0.76,"id":"https://metadata.un.org/sdg/15"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1553101044","https://openalex.org/W1573647811","https://openalex.org/W2029469881","https://openalex.org/W2037202266","https://openalex.org/W2047081748","https://openalex.org/W2102201073","https://openalex.org/W2112740000","https://openalex.org/W2171847515","https://openalex.org/W2185914977","https://openalex.org/W2208550830","https://openalex.org/W2464257012","https://openalex.org/W2749556736","https://openalex.org/W2911964244","https://openalex.org/W2912934387","https://openalex.org/W2916199673","https://openalex.org/W2938336646","https://openalex.org/W2962727190","https://openalex.org/W2964060211","https://openalex.org/W2964417596","https://openalex.org/W3015850748","https://openalex.org/W3084964856","https://openalex.org/W3104560798","https://openalex.org/W3108043540","https://openalex.org/W3120740533","https://openalex.org/W3122807153","https://openalex.org/W3125351362","https://openalex.org/W3126852964","https://openalex.org/W4212883601","https://openalex.org/W4312294904","https://openalex.org/W4399461368","https://openalex.org/W4399524674","https://openalex.org/W4399544175","https://openalex.org/W4399546908","https://openalex.org/W4399551319","https://openalex.org/W4399569070","https://openalex.org/W4399569324","https://openalex.org/W4399569501","https://openalex.org/W4399649527"],"related_works":["https://openalex.org/W4385283828","https://openalex.org/W4375840527","https://openalex.org/W4317600379","https://openalex.org/W4303449339","https://openalex.org/W4295102877","https://openalex.org/W4287118473","https://openalex.org/W4283762323","https://openalex.org/W3183669307","https://openalex.org/W3168850057","https://openalex.org/W3043432080"],"abstract_inverted_index":{"Like":[0],"many":[1],"predictive":[2],"models,":[3],"random":[4,54,88,122],"forests":[5,55,77],"provide":[6,28],"point":[7,14,35],"predictions":[8],"for":[9,117],"new":[10,69],"observations.":[11],"Besides":[12],"the":[13,21,24,31,34,65,107,110,128],"prediction,":[15],"it":[16],"is":[17,131],"important":[18],"to":[19,49,71,83,105,113],"quantify":[20],"uncertainty":[22],"in":[23,64],"prediction.":[25],"Prediction":[26],"intervals":[27,52,74,86,120],"information":[29],"about":[30],"reliability":[32],"of":[33,61,109],"predictions.":[36],"We":[37,94],"have":[38],"developed":[39],"a":[40,68],"comprehensive":[41],"R":[42],"package,":[43],"[RFpredInterval](https://CRAN.R-project.org/package=RFpredInterval),":[44],"that":[45,127],"integrates":[46],"16":[47],"methods":[48,62,116],"build":[50,72],"prediction":[51,73,85,119],"with":[53,75,87,121],"and":[56,79,100],"boosted":[57,76],"forests.":[58,123],"The":[59,124],"set":[60],"implemented":[63],"package":[66],"includes":[67],"method":[70,81,112,130],"(PIBF)":[78],"15":[80],"variations":[82],"produce":[84],"forests,":[89],"as":[90],"proposed":[91,111,129],"by":[92],"[@roy_prediction_2020].":[93],"perform":[95],"an":[96],"extensive":[97],"simulation":[98],"study":[99],"apply":[101],"real":[102],"data":[103],"analyses":[104],"compare":[106],"performance":[108],"ten":[114],"existing":[115],"building":[118],"results":[125],"show":[126],"very":[132],"competitive":[133],"and,":[134],"globally,":[135],"outperforms":[136],"competing":[137],"methods.":[138]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3168850057","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2021,"cited_by_count":1}],"updated_date":"2024-12-30T16:45:17.935188","created_date":"2021-06-22"}