{"id":"https://openalex.org/W4287638033","doi":"https://doi.org/10.32614/rj-2022-011","title":"PSweight: An R Package for Propensity Score Weighting Analysis","display_name":"PSweight: An R Package for Propensity Score Weighting Analysis","publication_year":2022,"publication_date":"2022-06-21","ids":{"openalex":"https://openalex.org/W4287638033","doi":"https://doi.org/10.32614/rj-2022-011"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-011","pdf_url":"https://journal.r-project.org/articles/RJ-2022-011/RJ-2022-011.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://journal.r-project.org/articles/RJ-2022-011/RJ-2022-011.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100880080","display_name":"Tianhui Zhou","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tianhui Zhou","raw_affiliation_strings":["Department of Biostatistics and Bioinformatics"],"affiliations":[{"raw_affiliation_string":"Department of Biostatistics and Bioinformatics","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039668253","display_name":"Guangyu Tong","orcid":"https://orcid.org/0000-0002-7697-5029"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guangyu Tong","raw_affiliation_strings":["Department of Biostatistics"],"affiliations":[{"raw_affiliation_string":"Department of Biostatistics","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100373539","display_name":"Fan Li","orcid":"https://orcid.org/0000-0001-6183-1893"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fan Li","raw_affiliation_strings":["Department of Statistical Science"],"affiliations":[{"raw_affiliation_string":"Department of Statistical Science","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043643766","display_name":"Laine Thomas","orcid":"https://orcid.org/0000-0002-5340-8742"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Laine E. Thomas","raw_affiliation_strings":["Department of Biostatistics and Bioinformatics"],"affiliations":[{"raw_affiliation_string":"Department of Biostatistics and Bioinformatics","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100373539","display_name":"Fan Li","orcid":"https://orcid.org/0000-0001-6183-1893"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fan Li","raw_affiliation_strings":["Department of Biostatistics"],"affiliations":[{"raw_affiliation_string":"Department of Biostatistics","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":7.414,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":30,"citation_normalized_percentile":{"value":0.999818,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"14","issue":"1","first_page":"282","last_page":"300"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10845","display_name":"Advanced Causal Inference Techniques","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10845","display_name":"Advanced Causal Inference Techniques","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10674","display_name":"School Choice and Performance","score":0.9894,"subfield":{"id":"https://openalex.org/subfields/3304","display_name":"Education"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10446","display_name":"Income, Poverty, and Inequality","score":0.9612,"subfield":{"id":"https://openalex.org/subfields/3312","display_name":"Sociology and Political Science"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/inverse-probability","display_name":"Inverse probability","score":0.5679455},{"id":"https://openalex.org/keywords/inverse-probability-weighting","display_name":"Inverse probability weighting","score":0.55981535},{"id":"https://openalex.org/keywords/average-treatment-effect","display_name":"Average treatment effect","score":0.54851764},{"id":"https://openalex.org/keywords/statistical-inference","display_name":"Statistical Inference","score":0.4313009}],"concepts":[{"id":"https://openalex.org/C158600405","wikidata":"https://www.wikidata.org/wiki/Q5054566","display_name":"Causal inference","level":2,"score":0.8133447},{"id":"https://openalex.org/C183115368","wikidata":"https://www.wikidata.org/wiki/Q856577","display_name":"Weighting","level":2,"score":0.81231236},{"id":"https://openalex.org/C17923572","wikidata":"https://www.wikidata.org/wiki/Q7250160","display_name":"Propensity score matching","level":2,"score":0.7969732},{"id":"https://openalex.org/C119043178","wikidata":"https://www.wikidata.org/wiki/Q320723","display_name":"Covariate","level":2,"score":0.785025},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.7045184},{"id":"https://openalex.org/C35981017","wikidata":"https://www.wikidata.org/wiki/Q6060409","display_name":"Inverse probability","level":4,"score":0.5679455},{"id":"https://openalex.org/C2779915747","wikidata":"https://www.wikidata.org/wiki/Q17058619","display_name":"Inverse probability weighting","level":3,"score":0.55981535},{"id":"https://openalex.org/C89337504","wikidata":"https://www.wikidata.org/wiki/Q4828276","display_name":"Average treatment effect","level":3,"score":0.54851764},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.539069},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.50742835},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.45842046},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4438231},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.43613392},{"id":"https://openalex.org/C134261354","wikidata":"https://www.wikidata.org/wiki/Q938438","display_name":"Statistical inference","level":2,"score":0.4313009},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33910248},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.17710635},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.16745144},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.0},{"id":"https://openalex.org/C99454951","wikidata":"https://www.wikidata.org/wiki/Q932068","display_name":"Environmental health","level":1,"score":0.0},{"id":"https://openalex.org/C57830394","wikidata":"https://www.wikidata.org/wiki/Q278079","display_name":"Posterior probability","level":3,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-011","pdf_url":"https://journal.r-project.org/articles/RJ-2022-011/RJ-2022-011.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2010.08893","pdf_url":"https://arxiv.org/pdf/2010.08893","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2010.08893","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-011","pdf_url":"https://journal.r-project.org/articles/RJ-2022-011/RJ-2022-011.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/1","display_name":"No poverty","score":0.59}],"grants":[],"datasets":[],"versions":["https://openalex.org/W4287638033"],"referenced_works_count":45,"referenced_works":["https://openalex.org/W1988790447","https://openalex.org/W1999822211","https://openalex.org/W2020747846","https://openalex.org/W2022420916","https://openalex.org/W2024046085","https://openalex.org/W2028040032","https://openalex.org/W2048470090","https://openalex.org/W2064097590","https://openalex.org/W2064113482","https://openalex.org/W2064903582","https://openalex.org/W2093130286","https://openalex.org/W2108361697","https://openalex.org/W2115098571","https://openalex.org/W2116943185","https://openalex.org/W2137370054","https://openalex.org/W2144387798","https://openalex.org/W2150291618","https://openalex.org/W2168639902","https://openalex.org/W2241445327","https://openalex.org/W2345125502","https://openalex.org/W2581073214","https://openalex.org/W2582743722","https://openalex.org/W2586456738","https://openalex.org/W2808972545","https://openalex.org/W2902949005","https://openalex.org/W2907932858","https://openalex.org/W2991409330","https://openalex.org/W2999253935","https://openalex.org/W3013279983","https://openalex.org/W3023814660","https://openalex.org/W3045304312","https://openalex.org/W3101131484","https://openalex.org/W3122290059","https://openalex.org/W3123582712","https://openalex.org/W3163916268","https://openalex.org/W4233056867","https://openalex.org/W4243220370","https://openalex.org/W4398518983","https://openalex.org/W4399546732","https://openalex.org/W4399549581","https://openalex.org/W4399578123","https://openalex.org/W4399587853","https://openalex.org/W4399612312","https://openalex.org/W4399635924","https://openalex.org/W4399650065"],"related_works":["https://openalex.org/W4389281082","https://openalex.org/W4382203196","https://openalex.org/W4311626472","https://openalex.org/W4302307796","https://openalex.org/W4292454352","https://openalex.org/W3170733499","https://openalex.org/W3124145941","https://openalex.org/W2983942640","https://openalex.org/W2098477911","https://openalex.org/W1967188199"],"abstract_inverted_index":{"Propensity":[0],"score":[1,79],"weighting":[2,98],"is":[3],"an":[4],"important":[5],"tool":[6],"for":[7,73,115],"comparative":[8],"effectiveness":[9],"research.":[10],"Besides":[11],"the":[12,38,61,121,124,131,140],"inverse":[13],"probability":[14],"of":[15,26,54,86,123,143],"treatment":[16],"weights":[17,40],"(IPW),":[18],"recent":[19],"development":[20],"has":[21],"introduced":[22],"a":[23,51,67,84,127],"general":[24],"class":[25],"balancing":[27,87],"weights,":[28,88],"corresponding":[29],"to":[30,43,65],"alternative":[31],"target":[32,52],"populations":[33],"and":[34,47,50,56,70,91,96,104,113],"estimands.":[35,107],"In":[36],"particular,":[37],"overlap":[39],"(OW)":[41],"lead":[42],"optimal":[44],"covariate":[45,116],"balance":[46,117],"estimation":[48],"efficiency,":[49],"population":[53],"scientific":[55],"policy":[57],"interest.":[58],"We":[59,119],"develop":[60],"R":[62],"package":[63,125],"[PSweight](https://CRAN.R-project.org/package=PSweight)":[64],"provide":[66],"comprehensive":[68],"design":[69],"analysis":[71],"platform":[72],"causal":[74,141],"inference":[75],"based":[76],"on":[77,146],"propensity":[78],"weighting.":[80],"PSweight":[81,108],"supports":[82],"(i)":[83],"variety":[85],"(ii)":[89],"binary":[90],"multiple":[92],"treatments,":[93],"(iii)":[94],"simple":[95],"augmented":[97],"estimators,":[99],"(iv)":[100],"nuisance-adjusted":[101],"sandwich":[102],"variances,":[103],"(v)":[105],"ratio":[106],"also":[109],"provides":[110],"diagnostic":[111],"tables":[112],"graphs":[114],"assessment.":[118],"demonstrate":[120],"functionality":[122],"using":[126],"data":[128],"example":[129],"from":[130],"National":[132],"Child":[133],"Development":[134],"Survey":[135],"(NCDS),":[136],"where":[137],"we":[138],"evaluate":[139],"effect":[142],"educational":[144],"attainment":[145],"income.":[147]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4287638033","counts_by_year":[{"year":2024,"cited_by_count":14},{"year":2023,"cited_by_count":12},{"year":2022,"cited_by_count":3}],"updated_date":"2025-01-17T11:49:46.422800","created_date":"2022-07-25"}