{"id":"https://openalex.org/W4290725730","doi":"https://doi.org/10.32614/rj-2022-009","title":"bayesanova: An R package for Bayesian Inference in the Analysis of Variance via Markov Chain Monte Carlo in Gaussian Mixture Models","display_name":"bayesanova: An R package for Bayesian Inference in the Analysis of Variance via Markov Chain Monte Carlo in Gaussian Mixture Models","publication_year":2022,"publication_date":"2022-06-21","ids":{"openalex":"https://openalex.org/W4290725730","doi":"https://doi.org/10.32614/rj-2022-009"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-009","pdf_url":"https://journal.r-project.org/articles/RJ-2022-009/RJ-2022-009.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://journal.r-project.org/articles/RJ-2022-009/RJ-2022-009.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057707089","display_name":"Riko Kelter","orcid":"https://orcid.org/0000-0001-9068-5696"},"institutions":[{"id":"https://openalex.org/I206895457","display_name":"University of Siegen","ror":"https://ror.org/02azyry73","country_code":"DE","type":"education","lineage":["https://openalex.org/I206895457"]}],"countries":["DE"],"is_corresponding":true,"raw_author_name":"Riko Kelter","raw_affiliation_strings":["University of Siegen, Department of Mathematics"],"affiliations":[{"raw_affiliation_string":"University of Siegen, Department of Mathematics","institution_ids":["https://openalex.org/I206895457"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5057707089"],"corresponding_institution_ids":["https://openalex.org/I206895457"],"apc_list":null,"apc_paid":null,"fwci":0.494,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.58178,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":76},"biblio":{"volume":"14","issue":"1","first_page":"54","last_page":"78"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9743,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9743,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9523,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.9471,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C111350023","wikidata":"https://www.wikidata.org/wiki/Q1191869","display_name":"Markov chain Monte Carlo","level":3,"score":0.82263},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.6157799},{"id":"https://openalex.org/C142291917","wikidata":"https://www.wikidata.org/wiki/Q4165283","display_name":"Bayes factor","level":4,"score":0.60405886},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.5620706},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5146419},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.4921407},{"id":"https://openalex.org/C191988596","wikidata":"https://www.wikidata.org/wiki/Q628374","display_name":"Null hypothesis","level":2,"score":0.47326827},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.43007958},{"id":"https://openalex.org/C19499675","wikidata":"https://www.wikidata.org/wiki/Q232207","display_name":"Monte Carlo method","level":2,"score":0.42404395},{"id":"https://openalex.org/C207201462","wikidata":"https://www.wikidata.org/wiki/Q182505","display_name":"Bayes' theorem","level":3,"score":0.41385326},{"id":"https://openalex.org/C87007009","wikidata":"https://www.wikidata.org/wiki/Q210832","display_name":"Statistical hypothesis testing","level":2,"score":0.4110564},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.35418305},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.32244766},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.260643}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-009","pdf_url":"https://journal.r-project.org/articles/RJ-2022-009/RJ-2022-009.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32614/rj-2022-009","pdf_url":"https://journal.r-project.org/articles/RJ-2022-009/RJ-2022-009.pdf","source":{"id":"https://openalex.org/S2489169438","display_name":"The R Journal","issn_l":"2073-4859","issn":["2073-4859"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":46,"referenced_works":["https://openalex.org/W1566333899","https://openalex.org/W1850669390","https://openalex.org/W1981457167","https://openalex.org/W1988520084","https://openalex.org/W2001082811","https://openalex.org/W2039640683","https://openalex.org/W2044819919","https://openalex.org/W2058189433","https://openalex.org/W2064604759","https://openalex.org/W2127007930","https://openalex.org/W2143841415","https://openalex.org/W2162286641","https://openalex.org/W2293040502","https://openalex.org/W2417986957","https://openalex.org/W2577537660","https://openalex.org/W2582743722","https://openalex.org/W2736386989","https://openalex.org/W2736848882","https://openalex.org/W2801776818","https://openalex.org/W2922853138","https://openalex.org/W2928584373","https://openalex.org/W2952752960","https://openalex.org/W2968619018","https://openalex.org/W2996229661","https://openalex.org/W3011193442","https://openalex.org/W3019865778","https://openalex.org/W3033632158","https://openalex.org/W3062735735","https://openalex.org/W3103877208","https://openalex.org/W3104822289","https://openalex.org/W3181444052","https://openalex.org/W3193805474","https://openalex.org/W3203192265","https://openalex.org/W4213391162","https://openalex.org/W4229977739","https://openalex.org/W4230758284","https://openalex.org/W4241675618","https://openalex.org/W4241756512","https://openalex.org/W4247460979","https://openalex.org/W4249731213","https://openalex.org/W4292403327","https://openalex.org/W4299857007","https://openalex.org/W4300870773","https://openalex.org/W4399592477","https://openalex.org/W4399650694","https://openalex.org/W605692607"],"related_works":["https://openalex.org/W4379208565","https://openalex.org/W4309645457","https://openalex.org/W4297513322","https://openalex.org/W3181444052","https://openalex.org/W3105309374","https://openalex.org/W2996576159","https://openalex.org/W2885664278","https://openalex.org/W2080772702","https://openalex.org/W2053675401","https://openalex.org/W1635996619"],"abstract_inverted_index":{"This":[0],"paper":[1],"introduces":[2],"the":[3,12,57,84,94,106,113,122,134,140],"R":[4],"package":[5],"[bayesanova](https://CRAN.R-project.org/package=bayesanova),":[6],"which":[7,49,79],"performs":[8],"Bayesian":[9,38,58],"inference":[10,82],"in":[11,61,96],"analysis":[13],"of":[14,105,112,116,124,133,139],"variance":[15],"(ANOVA).":[16],"Traditional":[17],"ANOVA":[18,59],"based":[19,44,70],"on":[20,45,64,71],"null":[21],"hypothesis":[22,53,117],"significance":[23],"testing":[24,54,118],"(NHST)":[25],"is":[26,69,87,108,119],"prone":[27],"to":[28],"overestimating":[29],"effects":[30,33],"and":[31,68,100,128,137],"stating":[32],"if":[34],"none":[35],"are":[36,43],"present.":[37],"ANOVAs":[39],"developed":[40],"so":[41],"far":[42],"Bayes":[46],"factors":[47],"(BF),":[48],"also":[50],"enforce":[51],"a":[52,72],"stance.":[55],"Instead,":[56],"implemented":[60,88],"bayesanova":[62],"focusses":[63],"effect":[65,101],"size":[66],"estimation":[67],"Gaussian":[73],"mixture":[74],"with":[75],"known":[76],"allocations,":[77],"for":[78,83,93],"full":[80],"posterior":[81],"component":[85],"parameters":[86,114],"via":[89,121],"Markov-Chain-Monte-Carlo":[90],"(MCMC).":[91],"Inference":[92],"difference":[95],"means,":[97],"standard":[98],"deviations":[99],"sizes":[102],"between":[103],"each":[104],"groups":[107],"obtained":[109],"automatically.":[110],"Estimation":[111],"instead":[115],"embraced":[120],"region":[123],"practical":[125],"equivalence":[126],"(ROPE),":[127],"helper":[129],"functions":[130],"provide":[131],"checks":[132],"model":[135],"assumptions":[136],"visualization":[138],"results.":[141]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4290725730","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-17T06:14:29.624500","created_date":"2022-08-09"}