{"id":"https://openalex.org/W4362514238","doi":"https://doi.org/10.32604/csse.2023.037706","title":"Robust Counting in Overcrowded Scenes Using Batch-Free Normalized Deep ConvNet","display_name":"Robust Counting in Overcrowded Scenes Using Batch-Free Normalized Deep ConvNet","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4362514238","doi":"https://doi.org/10.32604/csse.2023.037706"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32604/csse.2023.037706","pdf_url":"https://www.techscience.com/csse/v46n3/52212/pdf","source":{"id":"https://openalex.org/S4210214087","display_name":"Computer Systems Science and Engineering","issn_l":"0267-6192","issn":["0267-6192"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://www.techscience.com/csse/v46n3/52212/pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5031187873","display_name":"Sana Zahir","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sana Zahir","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026437230","display_name":"Rafiullah Khan","orcid":"https://orcid.org/0000-0002-0229-7747"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rafi Ullah Khan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011680661","display_name":"Mohib Ullah","orcid":"https://orcid.org/0000-0003-0534-8826"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mohib Ullah","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101946506","display_name":"Muhammad Ishaq","orcid":"https://orcid.org/0009-0008-7192-7600"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Muhammad Ishaq","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016372759","display_name":"Naqqash Dilshad","orcid":"https://orcid.org/0000-0002-4319-6790"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Naqqash Dilshad","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075042717","display_name":"Amin Ullah","orcid":"https://orcid.org/0000-0001-7538-2689"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Amin Ullah","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100690117","display_name":"Mi Young Lee","orcid":"https://orcid.org/0000-0002-8139-7091"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mi Young Lee","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.409,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.999976,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":91},"biblio":{"volume":"46","issue":"3","first_page":"2741","last_page":"2754"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12597","display_name":"Fire Detection and Safety Systems","score":0.987,"subfield":{"id":"https://openalex.org/subfields/2213","display_name":"Safety, Risk, Reliability and Quality"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/normalization","display_name":"Normalization","score":0.74033314},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5300405}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78428096},{"id":"https://openalex.org/C136886441","wikidata":"https://www.wikidata.org/wiki/Q926129","display_name":"Normalization (sociology)","level":2,"score":0.74033314},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6581839},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5524803},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5300405},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.50042486},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.4791119},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.46676207},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.44256428},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.34440148},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.08204225},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C19165224","wikidata":"https://www.wikidata.org/wiki/Q23404","display_name":"Anthropology","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.32604/csse.2023.037706","pdf_url":"https://www.techscience.com/csse/v46n3/52212/pdf","source":{"id":"https://openalex.org/S4210214087","display_name":"Computer Systems Science and Engineering","issn_l":"0267-6192","issn":["0267-6192"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32604/csse.2023.037706","pdf_url":"https://www.techscience.com/csse/v46n3/52212/pdf","source":{"id":"https://openalex.org/S4210214087","display_name":"Computer Systems Science and Engineering","issn_l":"0267-6192","issn":["0267-6192"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","score":0.53,"id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1991555767","https://openalex.org/W2102358377","https://openalex.org/W2485116416","https://openalex.org/W2596585349","https://openalex.org/W2604785935","https://openalex.org/W2963717945","https://openalex.org/W2999905431","https://openalex.org/W3000827343","https://openalex.org/W3014267213","https://openalex.org/W3027175416","https://openalex.org/W3089728331","https://openalex.org/W3215070584","https://openalex.org/W4214746678","https://openalex.org/W4220836661","https://openalex.org/W4226124777","https://openalex.org/W4287328878"],"related_works":["https://openalex.org/W4321369474","https://openalex.org/W4312417841","https://openalex.org/W4291897433","https://openalex.org/W4200173597","https://openalex.org/W3133861977","https://openalex.org/W3116150086","https://openalex.org/W3011074480","https://openalex.org/W2999805992","https://openalex.org/W2731899572","https://openalex.org/W2533072256"],"abstract_inverted_index":{"The":[0,38,87,125],"analysis":[1,30],"of":[2,31,51,83,91],"overcrowded":[3],"areas":[4],"is":[5,18,40,117],"essential":[6],"for":[7,34,112],"flow":[8],"monitoring,":[9],"assembly":[10],"control,":[11],"and":[12,43,78,93,138,145],"security.":[13],"Crowd":[14],"counting\u2019s":[15],"primary":[16],"goal":[17],"to":[19,109,133,152,165],"calculate":[20],"the":[21,44,55,122,147,167,172],"population":[22],"in":[23,162,171],"a":[24,49,80,84],"given":[25],"region,":[26],"which":[27,53,141],"requires":[28],"real-time":[29,143],"congested":[32],"scenes":[33],"prompt":[35],"reactionary":[36],"actions.":[37],"crowd":[39,85],"always":[41],"unexpected,":[42],"benchmarked":[45],"available":[46],"datasets":[47,159],"have":[48],"lot":[50],"variation,":[52],"limits":[54],"trained":[56],"models\u2019":[57],"performance":[58],"on":[59],"unseen":[60,113],"test":[61],"data.":[62],"In":[63],"this":[64,163],"paper,":[65],"we":[66],"proposed":[67,88,168],"an":[68,75],"end-to-end":[69],"deep":[70],"neural":[71],"network":[72,108,127],"that":[73,174],"takes":[74],"input":[76],"image":[77],"generates":[79],"density":[81,148],"map":[82],"scene.":[86],"model":[89],"consists":[90],"encoder":[92],"decoder":[94,126],"networks":[95],"comprising":[96],"batch-free":[97],"normalization":[98,103],"layers":[99,132],"known":[100],"as":[101],"evolving":[102],"(EvoNorm).":[104],"This":[105],"allows":[106],"our":[107],"be":[110],"generalized":[111],"data":[114],"because":[115],"EvoNorm":[116],"not":[118],"using":[119],"statistics":[120],"from":[121],"training":[123],"samples.":[124],"uses":[128],"dilated":[129],"2D":[130],"convolutional":[131],"provide":[134],"large":[135,154],"receptive":[136,155],"fields":[137],"fewer":[139],"parameters,":[140],"enables":[142],"processing":[144],"solves":[146],"drift":[149],"problem":[150],"due":[151],"its":[153],"field.":[156],"Five":[157],"benchmark":[158],"are":[160],"used":[161],"study":[164],"assess":[166],"model,":[169],"resulting":[170],"conclusion":[173],"it":[175],"outperforms":[176],"conventional":[177],"models.":[178]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4362514238","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-09T09:48:08.506806","created_date":"2023-04-06"}