{"id":"https://openalex.org/W4319987537","doi":"https://doi.org/10.32604/csse.2023.034475","title":"Efficient Deep Learning Framework for Fire Detection in Complex Surveillance Environment","display_name":"Efficient Deep Learning Framework for Fire Detection in Complex Surveillance Environment","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4319987537","doi":"https://doi.org/10.32604/csse.2023.034475"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32604/csse.2023.034475","pdf_url":"https://file.techscience.com/files/csse/2023/TSP_CSSE-46-1/TSP_CSSE_34475/TSP_CSSE_34475.pdf","source":{"id":"https://openalex.org/S4210214087","display_name":"Computer Systems Science and Engineering","issn_l":"0267-6192","issn":["0267-6192"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://file.techscience.com/files/csse/2023/TSP_CSSE-46-1/TSP_CSSE_34475/TSP_CSSE_34475.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5016372759","display_name":"Naqqash Dilshad","orcid":"https://orcid.org/0000-0002-4319-6790"},"institutions":[],"countries":["KR"],"is_corresponding":true,"raw_author_name":"Naqqash Dilshad","raw_affiliation_strings":["Department of Convergence Engineering for Intelligent Drone, Seoul, 05006, Korea"],"affiliations":[{"raw_affiliation_string":"Department of Convergence Engineering for Intelligent Drone, Seoul, 05006, Korea","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":["https://openalex.org/A5016372759"],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":9.037,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":25,"citation_normalized_percentile":{"value":0.999805,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"46","issue":"1","first_page":"749","last_page":"764"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12597","display_name":"Fire Detection and Safety Systems","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2213","display_name":"Safety, Risk, Reliability and Quality"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12597","display_name":"Fire Detection and Safety Systems","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2213","display_name":"Safety, Risk, Reliability and Quality"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11500","display_name":"Evacuation and Crowd Dynamics","score":0.9887,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9833,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/fire-detection","display_name":"Fire Detection","score":0.55152416},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.45472375}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75016385},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6938614},{"id":"https://openalex.org/C34736171","wikidata":"https://www.wikidata.org/wiki/Q918333","display_name":"Preprocessor","level":2,"score":0.6282711},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.58668613},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5661923},{"id":"https://openalex.org/C2780836893","wikidata":"https://www.wikidata.org/wiki/Q19922674","display_name":"Fire detection","level":2,"score":0.55152416},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5064813},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.4659029},{"id":"https://openalex.org/C2780262971","wikidata":"https://www.wikidata.org/wiki/Q44554","display_name":"Law enforcement","level":2,"score":0.4573353},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.45472375},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41255537},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.34779647},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34625524},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12878823},{"id":"https://openalex.org/C170154142","wikidata":"https://www.wikidata.org/wiki/Q150737","display_name":"Architectural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.32604/csse.2023.034475","pdf_url":"https://file.techscience.com/files/csse/2023/TSP_CSSE-46-1/TSP_CSSE_34475/TSP_CSSE_34475.pdf","source":{"id":"https://openalex.org/S4210214087","display_name":"Computer Systems Science and Engineering","issn_l":"0267-6192","issn":["0267-6192"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32604/csse.2023.034475","pdf_url":"https://file.techscience.com/files/csse/2023/TSP_CSSE-46-1/TSP_CSSE_34475/TSP_CSSE_34475.pdf","source":{"id":"https://openalex.org/S4210214087","display_name":"Computer Systems Science and Engineering","issn_l":"0267-6192","issn":["0267-6192"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions","score":0.75}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1996199746","https://openalex.org/W2169124859","https://openalex.org/W2487128966","https://openalex.org/W2618530766","https://openalex.org/W2751420734","https://openalex.org/W2793947836","https://openalex.org/W2810053451","https://openalex.org/W2913895065","https://openalex.org/W2914296386","https://openalex.org/W2944432529","https://openalex.org/W2963155258","https://openalex.org/W2963294168","https://openalex.org/W2991110851","https://openalex.org/W3089728331","https://openalex.org/W3100733145","https://openalex.org/W3121984892","https://openalex.org/W3135722972","https://openalex.org/W3136217325","https://openalex.org/W3173590174","https://openalex.org/W3195751695","https://openalex.org/W3198377135","https://openalex.org/W3204492061","https://openalex.org/W3205344130","https://openalex.org/W3206324440","https://openalex.org/W4200207938","https://openalex.org/W4206103951","https://openalex.org/W4210297774","https://openalex.org/W4210516328","https://openalex.org/W4220836661","https://openalex.org/W4223958543","https://openalex.org/W4224930816","https://openalex.org/W4225608741","https://openalex.org/W4282937346","https://openalex.org/W4285528348"],"related_works":["https://openalex.org/W4380075502","https://openalex.org/W4321369474","https://openalex.org/W4312417841","https://openalex.org/W4291897433","https://openalex.org/W4223943233","https://openalex.org/W4200173597","https://openalex.org/W3133861977","https://openalex.org/W3116150086","https://openalex.org/W2999805992","https://openalex.org/W2731899572"],"abstract_inverted_index":{"To":[0],"prevent":[1],"economic,":[2],"social,":[3],"and":[4,9,82,101,156,162,174,200,219],"ecological":[5],"damage,":[6],"fire":[7,39,50],"detection":[8,51,57,140],"management":[10,163],"at":[11],"an":[12,48],"early":[13],"stage":[14],"are":[15,108,111,134,154],"significant":[16,74],"yet":[17],"challenging.":[18],"Although":[19],"computationally":[20],"complex":[21,60],"networks":[22],"have":[23],"been":[24,28],"developed,":[25],"attention":[26],"has":[27],"largely":[29],"focused":[30],"on":[31,37],"improving":[32],"accuracy,":[33,169,216],"rather":[34],"than":[35],"focusing":[36],"real-time":[38,56],"detection.":[40],"Hence,":[41],"in":[42,58,92,127,213],"this":[43],"study,":[44],"the":[45,70,77,85,116,144,190,207],"authors":[46],"present":[47],"efficient":[49],"framework":[52],"termed":[53],"E-FireNet":[54,166],"for":[55],"a":[59,96,151],"surveillance":[61],"environment.":[62],"The":[63,197],"proposed":[64,145,208],"model":[65,209,217],"architecture":[66],"is":[67,150,187],"inspired":[68],"by":[69],"VGG16":[71],"network,":[72],"with":[73,95,122],"modifications":[75],"including":[76],"entire":[78],"removal":[79],"of":[80,84,88,99,137,141,180,202,215],"Block-5":[81],"tweaking":[83],"convolutional":[86,106],"layers":[87],"Block-4.":[89],"This":[90],"results":[91,199],"higher":[93],"performance":[94,212],"reduced":[97],"number":[98],"parameters":[100,204],"inference":[102],"time.":[103,221],"Moreover,":[104,165],"smaller":[105],"kernels":[107],"utilized,":[109],"which":[110],"particularly":[112],"designed":[113],"to":[114,125,158],"obtain":[115],"optimal":[117],"details":[118],"from":[119],"input":[120],"images,":[121],"numerous":[123,203],"channels":[124],"assist":[126],"feature":[128],"discrimination.":[129],"In":[130],"E-FireNet,":[131],"three":[132],"steps":[133],"involved:":[135],"preprocessing":[136],"collected":[138],"data,":[139],"fires":[142],"using":[143,189],"technique,":[146],"and,":[147],"if":[148],"there":[149],"fire,":[152],"alarms":[153],"generated":[155],"transmitted":[157],"law":[159],"enforcement,":[160],"healthcare,":[161],"departments.":[164],"achieves":[167],"0.98":[168],"1":[170],"precision,":[171],"0.99":[172,175],"recall,":[173],"F1-score.":[176],"A":[177],"comprehensive":[178],"investigation":[179],"various":[181],"Convolutional":[182],"Neural":[183],"Network":[184],"(CNN)":[185],"models":[186],"conducted":[188],"newly":[191],"created":[192],"Fire":[193],"Surveillance":[194],"SV-Fire":[195],"dataset.":[196],"empirical":[198],"comparison":[201],"establish":[205],"that":[206],"shows":[210],"convincing":[211],"terms":[214],"size,":[218],"execution":[220]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4319987537","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":11},{"year":2023,"cited_by_count":11}],"updated_date":"2025-02-22T10:35:05.564491","created_date":"2023-02-11"}