{"id":"https://openalex.org/W3122208979","doi":"https://doi.org/10.32604/csse.2020.35.495","title":"Semantic Analysis Techniques using Twitter Datasets on Big Data: Comparative Analysis Study","display_name":"Semantic Analysis Techniques using Twitter Datasets on Big Data: Comparative Analysis Study","publication_year":2020,"publication_date":"2020-01-01","ids":{"openalex":"https://openalex.org/W3122208979","doi":"https://doi.org/10.32604/csse.2020.35.495","mag":"3122208979"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32604/csse.2020.35.495","pdf_url":null,"source":{"id":"https://openalex.org/S4210214087","display_name":"Computer Systems Science and Engineering","issn_l":"0267-6192","issn":["0267-6192"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.32604/csse.2020.35.495","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5031125465","display_name":"Belal Abdullah Hezam Murshed","orcid":"https://orcid.org/0000-0003-2187-5044"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Belal Abdullah Hezam Murshed","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044418860","display_name":"Hasib Daowd Esmail Al-ariki","orcid":"https://orcid.org/0000-0002-0514-7189"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hasib Daowd Esmail Al-ariki","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5090847392","display_name":"M Suresha","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Suresha Mallappa","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.362,"has_fulltext":false,"cited_by_count":25,"citation_normalized_percentile":{"value":0.890118,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"35","issue":"6","first_page":"495","last_page":"512"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.648123},{"id":"https://openalex.org/keywords/similarity-measure","display_name":"Similarity measure","score":0.541226},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4469539},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.43076038}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76393586},{"id":"https://openalex.org/C130318100","wikidata":"https://www.wikidata.org/wiki/Q2268914","display_name":"Semantic similarity","level":2,"score":0.7474399},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.65810984},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.648123},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.5981776},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.5971725},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.57982934},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5767166},{"id":"https://openalex.org/C2776517306","wikidata":"https://www.wikidata.org/wiki/Q29017317","display_name":"Similarity measure","level":2,"score":0.541226},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.45738807},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4469539},{"id":"https://openalex.org/C19768560","wikidata":"https://www.wikidata.org/wiki/Q320727","display_name":"Dependency (UML)","level":2,"score":0.4378714},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.43076038},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3105721},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.13275361},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.32604/csse.2020.35.495","pdf_url":null,"source":{"id":"https://openalex.org/S4210214087","display_name":"Computer Systems Science and Engineering","issn_l":"0267-6192","issn":["0267-6192"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.32604/csse.2020.35.495","pdf_url":null,"source":{"id":"https://openalex.org/S4210214087","display_name":"Computer Systems Science and Engineering","issn_l":"0267-6192","issn":["0267-6192"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W1662133657","https://openalex.org/W1979325497","https://openalex.org/W2121184547","https://openalex.org/W2123457740","https://openalex.org/W2158997610","https://openalex.org/W2250539671","https://openalex.org/W2523199059","https://openalex.org/W2950225692"],"related_works":["https://openalex.org/W4211085505","https://openalex.org/W408804804","https://openalex.org/W3122478268","https://openalex.org/W2375873920","https://openalex.org/W2154771632","https://openalex.org/W2146114872","https://openalex.org/W2084758217","https://openalex.org/W2067317451","https://openalex.org/W1578798012","https://openalex.org/W1549395822"],"abstract_inverted_index":{"This":[0],"paper":[1],"conducts":[2],"a":[3,50],"comprehensive":[4],"review":[5],"of":[6,57],"various":[7],"word":[8,25],"and":[9,20,30,81,86],"sentence":[10,41,125],"semantic":[11,26,42],"similarity":[12,27,43,126],"techniques":[13],"proposed":[14,62,94,102,120],"in":[15,113],"the":[16,54,58,68,93,119],"literature.":[17],"Corpus-based,":[18],"Knowledge-based,":[19],"Feature-based":[21],"are":[22,38],"categorized":[23,39],"under":[24],"techniques.":[28,44],"String":[29],"set-based,":[31],"Word":[32],"Order-based":[33],"Similarity,":[34],"POSbased,":[35],"Syntactic":[36],"dependency-based":[37],"as":[40],"Using":[45],"these":[46],"techniques,":[47],"we":[48,91],"propose":[49],"model":[51,63,103,121],"for":[52],"computing":[53],"overall":[55],"accuracy":[56],"twitter":[59,99],"dataset.":[60],"The":[61,101],"has":[64],"been":[65],"tested":[66],"on":[67,96,105,123],"following":[69],"four":[70],"measures:":[71],"Atish's":[72,106],"measure,":[73,75],"Li's":[74],"Mihalcea's":[76,82],"measure":[77,83,107],"with":[78,84,118],"path":[79],"similarity,":[80],"Wu":[85],"Palmer's":[87],"(WuP)":[88],"similarity.":[89],"Finally,":[90],"evaluate":[92],"method":[95],"three":[97],"real-world":[98],"datasets.":[100],"based":[104,122],"seems":[108],"to":[109],"offer":[110],"good":[111],"results":[112],"all":[114],"datasets":[115],"when":[116],"compared":[117],"other":[124],"measures.":[127]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3122208979","counts_by_year":[{"year":2025,"cited_by_count":3},{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":9},{"year":2021,"cited_by_count":5}],"updated_date":"2025-04-23T01:15:24.716958","created_date":"2021-02-01"}