{"id":"https://openalex.org/W3124962531","doi":"https://doi.org/10.32604/csse.2018.33.267","title":"Analysis and Application of the Spatio-Temporal Feature in Wind Power Prediction","display_name":"Analysis and Application of the Spatio-Temporal Feature in Wind Power Prediction","publication_year":2018,"publication_date":"2018-01-01","ids":{"openalex":"https://openalex.org/W3124962531","doi":"https://doi.org/10.32604/csse.2018.33.267","mag":"3124962531"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.32604/csse.2018.33.267","pdf_url":null,"source":{"id":"https://openalex.org/S4210214087","display_name":"Computer Systems Science and Engineering","issn_l":"0267-6192","issn":["0267-6192"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5110584498","display_name":"Ruiguo Yu","orcid":"https://orcid.org/0000-0003-4039-2355"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ruiguo Yu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100415078","display_name":"Zhiqiang Liu","orcid":"https://orcid.org/0000-0001-7360-7725"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhiqiang Liu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5115603945","display_name":"Jianrong Wang","orcid":"https://orcid.org/0000-0002-8430-3492"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jianrong Wang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047744254","display_name":"Mankun Zhao","orcid":"https://orcid.org/0000-0003-1571-8771"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mankun Zhao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101693329","display_name":"Jie Gao","orcid":"https://orcid.org/0000-0003-3768-7099"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jie Gao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5091433252","display_name":"Mei Yu","orcid":"https://orcid.org/0000-0003-3583-1587"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mei Yu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.097,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.334127,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":62,"max":70},"biblio":{"volume":"33","issue":"4","first_page":"267","last_page":"274"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12451","display_name":"Smart Grid and Power Systems","score":0.91,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14276","display_name":"Power Systems and Technologies","score":0.906,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.67105913},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.51071453},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.4702567}],"concepts":[{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.6965085},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6902609},{"id":"https://openalex.org/C84525736","wikidata":"https://www.wikidata.org/wiki/Q831366","display_name":"Decision tree","level":2,"score":0.68920493},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.67105913},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.60679495},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.5750227},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5666502},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5641613},{"id":"https://openalex.org/C78600449","wikidata":"https://www.wikidata.org/wiki/Q43302","display_name":"Wind power","level":2,"score":0.518325},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.51071453},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4778083},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.4702567},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45709437},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.45118743},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.44514367},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.42443997},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.17111322},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.16867137},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14434686},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.32604/csse.2018.33.267","pdf_url":null,"source":{"id":"https://openalex.org/S4210214087","display_name":"Computer Systems Science and Engineering","issn_l":"0267-6192","issn":["0267-6192"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7","score":0.91}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4388550696","https://openalex.org/W4366990902","https://openalex.org/W4321636153","https://openalex.org/W4317732970","https://openalex.org/W4313289487","https://openalex.org/W4289884158","https://openalex.org/W4288365262","https://openalex.org/W2940614149","https://openalex.org/W2787485953","https://openalex.org/W2048488252"],"abstract_inverted_index":{"The":[0,139],"spatio-temporal":[1,25,40],"feature":[2,26],"with":[3],"historical":[4],"wind":[5,17,51],"power":[6,18,52],"information":[7,10],"and":[8,73,97,120],"spatial":[9],"can":[11,155],"effectively":[12],"improve":[13],"the":[14,21,24,36,39,57,67,70,92,98,104,109,121,137,144,149,161],"accuracy":[15],"of":[16,23,38,69],"prediction,":[19],"but":[20],"role":[22],"has":[27],"not":[28],"yet":[29],"been":[30],"fully":[31],"discovered.":[32],"This":[33],"paper":[34,154],"investigates":[35],"variance":[37,68],"feature.":[41],"Based":[42],"on":[43,136,143],"this,":[44],"a":[45,118,157],"hybrid":[46],"machine":[47,87,95],"learning":[48,88],"method":[49,134,150],"for":[50,117],"prediction":[53],"is":[54,60,77],"designed.":[55],"First,":[56],"training":[58],"set":[59],"divided":[61],"into":[62],"several":[63],"groups":[64],"according":[65],"to":[66,79,114],"input":[71],"pattern,":[72],"then":[74],"each":[75],"group":[76],"used":[78,102],"train":[80],"one":[81],"or":[82],"more":[83],"predictors":[84,111,126],"respectively.":[85],"Multiple":[86],"methods,":[89],"such":[90],"as":[91],"support":[93],"vector":[94],"regression":[96],"decision":[99],"tree,":[100],"are":[101,112],"in":[103,152],"proposed":[105],"method.":[106],"Second,":[107],"all":[108],"trained":[110],"adopted":[113,151],"make":[115],"predictions":[116],"sample,":[119],"results":[122,141],"generated":[123],"from":[124],"these":[125],"will":[127],"be":[128],"combined":[129],"by":[130],"an":[131],"optimized":[132],"combination":[133],"based":[135,142],"variance.":[138],"experimental":[140],"NREL":[145],"dataset":[146],"show":[147],"that":[148],"this":[153],"achieve":[156],"better":[158],"performance":[159],"than":[160],"stage-of-the-art":[162],"approaches.":[163]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3124962531","counts_by_year":[{"year":2020,"cited_by_count":1}],"updated_date":"2025-04-23T01:13:02.008097","created_date":"2021-02-01"}