{"id":"https://openalex.org/W4400284131","doi":"https://doi.org/10.32473/flairs.37.1.135540","title":"Improving Axial-Attention Network via Cross-Channel Weight Sharing","display_name":"Improving Axial-Attention Network via Cross-Channel Weight Sharing","publication_year":2024,"publication_date":"2024-05-13","ids":{"openalex":"https://openalex.org/W4400284131","doi":"https://doi.org/10.32473/flairs.37.1.135540"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.32473/flairs.37.1.135540","pdf_url":null,"source":{"id":"https://openalex.org/S4210205383","display_name":"Proceedings of the ... International Florida Artificial Intelligence Research Society Conference","issn_l":"2334-0754","issn":["2334-0754","2334-0762"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320363","host_organization_name":"George A. Smathers Libraries","host_organization_lineage":["https://openalex.org/P4310320363"],"host_organization_lineage_names":["George A. Smathers Libraries"],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041406797","display_name":"Nazmul Shahadat","orcid":"https://orcid.org/0000-0003-3762-4901"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nazmul Shahadat","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5075357799","display_name":"Anthony S. Maida","orcid":"https://orcid.org/0000-0003-2586-2865"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Anthony S. Maida","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.193,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.81054,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":93},"biblio":{"volume":"37","issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9503,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9503,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.47018516},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.34968713},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.33615375},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.2931288}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.32473/flairs.37.1.135540","pdf_url":null,"source":{"id":"https://openalex.org/S4210205383","display_name":"Proceedings of the ... International Florida Artificial Intelligence Research Society Conference","issn_l":"2334-0754","issn":["2334-0754","2334-0762"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320363","host_organization_name":"George A. Smathers Libraries","host_organization_lineage":["https://openalex.org/P4310320363"],"host_organization_lineage_names":["George A. Smathers Libraries"],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4395014643","https://openalex.org/W4391375266","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"In":[0],"recent":[1],"years,Hypercomplex-inspired":[2],"neural":[3],"networks":[4,105],"improved":[5,63,96],"deep":[6],"CNN":[7],"architectures":[8,93],"due":[9],"to":[10,13,61,91],"their":[11,42],"ability":[12],"share":[14],"weights":[15],"across":[16],"input":[17],"channels":[18],"and":[19,80,116],"thus":[20],"improve":[21],"cohesivenessof":[22],"representations":[23],"within":[24],"the":[25,31,51,58,72,75,77,99,109,113,117,129],"layers.The":[26],"work":[27],"described":[28],"herein":[29],"studies":[30],"effect":[32,52],"of":[33,74,125,128],"replacing":[34,85],"existing":[35],"layers":[36],"inan":[37],"Axial":[38,118],"Attention":[39,119],"ResNet":[40],"with":[41,66,71,87],"quaternion":[43,59],"variants":[44],"that":[45,136],"use":[46],"cross-channel":[47],"weight":[48],"sharingto":[49],"assess":[50],"on":[53,98],"image":[54],"classification.":[55],"We":[56],"expect":[57],"enhancements":[60],"produce":[62],"feature":[64],"maps":[65],"more":[67],"interlinked":[68],"representations.We":[69],"experiment":[70],"stem":[73],"network,":[76],"bottleneck":[78],"layer,":[79],"thefully":[81],"connected":[82],"backend,":[83],"by":[84],"them":[86],"quaternionversions.These":[88],"modifications":[89],"lead":[90],"novel":[92],"which":[94,126],"yield":[95],"accuracyperformance":[97],"ImageNet300k":[100],"classification":[101],"dataset.":[102],"Our":[103],"baseline":[104],"for":[106,146],"comparison":[107],"were":[108],"original":[110,114],"real-valued":[111],"ResNet,":[112],"quaternion-valuedResNet,":[115],"ResNet.Since":[120],"improvement":[121],"was":[122,131],"observed":[123],"regardless":[124],"part":[127],"network":[130],"modified,there":[132],"is":[133],"a":[134,147],"promise":[135],"this":[137],"technique":[138],"may":[139],"be":[140],"generally":[141],"useful":[142],"in":[143],"improvingclassification":[144],"accuracy":[145],"large":[148],"classof":[149],"networks.":[150]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4400284131","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-03-26T08:15:18.963175","created_date":"2024-07-05"}