{"id":"https://openalex.org/W2383778538","doi":"https://doi.org/10.3233/kes-160331","title":"Evolutionary extreme learning machine for energy price forecasting","display_name":"Evolutionary extreme learning machine for energy price forecasting","publication_year":2016,"publication_date":"2016-05-04","ids":{"openalex":"https://openalex.org/W2383778538","doi":"https://doi.org/10.3233/kes-160331","mag":"2383778538"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.3233/kes-160331","pdf_url":null,"source":{"id":"https://openalex.org/S133764092","display_name":"International Journal of Knowledge-based and Intelligent Engineering Systems","issn_l":"1327-2314","issn":["1327-2314","1875-8827"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310318577","host_organization_name":"IOS Press","host_organization_lineage":["https://openalex.org/P4310318577"],"host_organization_lineage_names":["IOS Press"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103255746","display_name":"S. Chakravarty","orcid":"https://orcid.org/0009-0000-7510-6158"},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"S. Chakravarty","raw_affiliation_strings":["Orissa Engineering College, Bhubaneswar, India"],"affiliations":[{"raw_affiliation_string":"Orissa Engineering College, Bhubaneswar, India","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042253646","display_name":"Puspanjali Mohapatra","orcid":"https://orcid.org/0000-0002-1718-1640"},"institutions":[{"id":"https://openalex.org/I4210097016","display_name":"International Institute of Information Technology","ror":"https://ror.org/00qryer39","country_code":"IN","type":"education","lineage":["https://openalex.org/I4210097016"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"P. Mohapatra","raw_affiliation_strings":["IIIT, Bhubaneswar, India"],"affiliations":[{"raw_affiliation_string":"IIIT, Bhubaneswar, India","institution_ids":["https://openalex.org/I4210097016"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5110570680","display_name":"P.K. Dash","orcid":null},"institutions":[{"id":"https://openalex.org/I193073490","display_name":"Siksha O Anusandhan University","ror":"https://ror.org/056ep7w45","country_code":"IN","type":"education","lineage":["https://openalex.org/I193073490"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"P.K. Dash","raw_affiliation_strings":["Siksha `O' Anusandhan University, Bhubaneswar, India"],"affiliations":[{"raw_affiliation_string":"Siksha `O' Anusandhan University, Bhubaneswar, India","institution_ids":["https://openalex.org/I193073490"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.363,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":11,"citation_normalized_percentile":{"value":0.741479,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":"20","issue":"2","first_page":"75","last_page":"96"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10424","display_name":"Electric Power System Optimization","score":0.9889,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/extreme-learning-machine","display_name":"Extreme Learning Machine","score":0.5608315}],"concepts":[{"id":"https://openalex.org/C2780150128","wikidata":"https://www.wikidata.org/wiki/Q21948731","display_name":"Extreme learning machine","level":3,"score":0.5608315},{"id":"https://openalex.org/C186370098","wikidata":"https://www.wikidata.org/wiki/Q442787","display_name":"Energy (signal processing)","level":2,"score":0.49361408},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.49205035},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44874898},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4024779},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.20187682},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.089449495},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.3233/kes-160331","pdf_url":null,"source":{"id":"https://openalex.org/S133764092","display_name":"International Journal of Knowledge-based and Intelligent Engineering Systems","issn_l":"1327-2314","issn":["1327-2314","1875-8827"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310318577","host_organization_name":"IOS Press","host_organization_lineage":["https://openalex.org/P4310318577"],"host_organization_lineage_names":["IOS Press"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7","score":0.76}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":66,"referenced_works":["https://openalex.org/W1524892475","https://openalex.org/W1596914020","https://openalex.org/W1966897524","https://openalex.org/W1967433954","https://openalex.org/W1967989262","https://openalex.org/W1973043741","https://openalex.org/W1976744965","https://openalex.org/W1977200004","https://openalex.org/W1980418485","https://openalex.org/W1980833246","https://openalex.org/W1991224261","https://openalex.org/W1992661499","https://openalex.org/W1993717606","https://openalex.org/W1997754540","https://openalex.org/W2000135657","https://openalex.org/W2001797389","https://openalex.org/W2003608156","https://openalex.org/W2007898191","https://openalex.org/W2018936073","https://openalex.org/W2026471620","https://openalex.org/W2026739847","https://openalex.org/W2028914753","https://openalex.org/W2029921820","https://openalex.org/W2036823568","https://openalex.org/W2036848770","https://openalex.org/W2040604977","https://openalex.org/W2049398819","https://openalex.org/W2050787557","https://openalex.org/W2052311601","https://openalex.org/W2053211387","https://openalex.org/W2061507872","https://openalex.org/W2061684001","https://openalex.org/W2065438605","https://openalex.org/W2066505698","https://openalex.org/W2075846637","https://openalex.org/W2077344880","https://openalex.org/W2078247327","https://openalex.org/W2086436618","https://openalex.org/W2093079043","https://openalex.org/W2094074979","https://openalex.org/W2094256195","https://openalex.org/W2095268412","https://openalex.org/W2095471434","https://openalex.org/W2096071157","https://openalex.org/W2111833294","https://openalex.org/W2114573116","https://openalex.org/W2126783946","https://openalex.org/W2126831543","https://openalex.org/W2127150635","https://openalex.org/W2128471850","https://openalex.org/W2130828582","https://openalex.org/W2134603844","https://openalex.org/W2153879578","https://openalex.org/W2155311203","https://openalex.org/W2159040640","https://openalex.org/W2163897014","https://openalex.org/W2167188817","https://openalex.org/W2168185444","https://openalex.org/W2169337658","https://openalex.org/W2171985965","https://openalex.org/W2239924092","https://openalex.org/W2324768929","https://openalex.org/W2331319539","https://openalex.org/W3123092160","https://openalex.org/W3143300990","https://openalex.org/W3150435615"],"related_works":["https://openalex.org/W4386462264","https://openalex.org/W4364306694","https://openalex.org/W4312192474","https://openalex.org/W4306674287","https://openalex.org/W4283697347","https://openalex.org/W3170094116","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2969890106","https://openalex.org/W2961085424"],"abstract_inverted_index":{"Accurate":[0],"electricity":[1,10,40],"price":[2,41],"forecasting":[3],"is":[4,110],"a":[5,15,32,73],"key":[6],"area":[7],"in":[8],"the":[9,95,101,104],"market.":[11],"This":[12],"paper":[13],"proposes":[14],"hybrid":[16],"model,":[17,68],"Evolutionary-Improved":[18],"Cuckoo":[19,70],"Search":[20,71,117],"Extreme":[21],"Learning":[22],"Machine":[23],"(E-ICSELM)":[24],"for":[25,42],"day":[26],"and":[27,64,84,87,115],"week":[28],"ahead":[29],"prediction":[30],"of":[31,103],"highly":[33],"volatile":[34],"financial":[35],"time":[36],"series":[37],"data":[38],"i.e.":[39],"si":[43],"x":[44],"different":[45],"energy":[46],"markets":[47],"such":[48],"as":[49],"Hourly":[50],"Ontario":[51],"Electricity":[52],"Price":[53],"(HOEP),":[54],"Pennsylvania":[55],"Jersey":[56],"Maryland":[57],"(PJM),":[58],"New":[59],"England,":[60],"Nord":[61],"Pool,":[62],"California":[63],"Spain.":[65],"In":[66],"this":[67],"Improved":[69],"(ICS),":[72],"meta-heuristic,":[74],"population":[75],"based":[76,118],"optimization":[77],"techniques":[78],"used":[79],"to":[80,92],"select":[81],"input":[82],"weights":[83],"hidden":[85],"biases":[86],"Moore-Penrose":[88],"(MP)":[89],"generalized":[90],"inverse":[91],"analytically":[93],"determine":[94],"output":[96],"weights.":[97],"Experimental":[98],"results":[99],"show":[100],"superiority":[102],"proposed":[105],"E-ICSELM":[106],"model":[107],"when":[108],"it":[109],"compared":[111],"with":[112],"simple":[113],"ELM":[114,119],"Evolutionary-Cuckoo":[116],"(E-CSELM).":[120]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2383778538","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1}],"updated_date":"2025-02-18T01:42:16.683597","created_date":"2016-06-24"}