{"id":"https://openalex.org/W4392387468","doi":"https://doi.org/10.3233/jifs-236893","title":"Optimized multiscale deep bidirectional gated recurrent neural network fostered practical teaching of university music course","display_name":"Optimized multiscale deep bidirectional gated recurrent neural network fostered practical teaching of university music course","publication_year":2024,"publication_date":"2024-03-01","ids":{"openalex":"https://openalex.org/W4392387468","doi":"https://doi.org/10.3233/jifs-236893"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.3233/jifs-236893","pdf_url":null,"source":{"id":"https://openalex.org/S179157397","display_name":"Journal of Intelligent & Fuzzy Systems","issn_l":"1064-1246","issn":["1064-1246","1875-8967"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310318577","host_organization_name":"IOS Press","host_organization_lineage":["https://openalex.org/P4310318577"],"host_organization_lineage_names":["IOS Press"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5058072230","display_name":"Yuanyuan Hu","orcid":"https://orcid.org/0000-0001-8511-1401"},"institutions":[{"id":"https://openalex.org/I141649914","display_name":"Nanchang University","ror":"https://ror.org/042v6xz23","country_code":"CN","type":"funder","lineage":["https://openalex.org/I141649914"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Yuanyuan Hu","raw_affiliation_strings":["Department of Art Education and Teaching, Nanchang University, Nanchang, Jiangxi, China"],"affiliations":[{"raw_affiliation_string":"Department of Art Education and Teaching, Nanchang University, Nanchang, Jiangxi, China","institution_ids":["https://openalex.org/I141649914"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5058072230"],"corresponding_institution_ids":["https://openalex.org/I141649914"],"apc_list":null,"apc_paid":null,"fwci":4.623,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.795159,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"46","issue":"4","first_page":"9577","last_page":"9590"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12260","display_name":"Educational Technology and Pedagogy","score":0.9601,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12260","display_name":"Educational Technology and Pedagogy","score":0.9601,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13647","display_name":"AI and Big Data Applications","score":0.9549,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14254","display_name":"Digital Media and Visual Art","score":0.9291,"subfield":{"id":"https://openalex.org/subfields/1704","display_name":"Computer Graphics and Computer-Aided Design"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76102585},{"id":"https://openalex.org/C194969405","wikidata":"https://www.wikidata.org/wiki/Q170519","display_name":"Virtual reality","level":2,"score":0.5328342},{"id":"https://openalex.org/C49774154","wikidata":"https://www.wikidata.org/wiki/Q131765","display_name":"Multimedia","level":1,"score":0.5200205},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.44813806},{"id":"https://openalex.org/C2780365114","wikidata":"https://www.wikidata.org/wiki/Q169478","display_name":"MATLAB","level":2,"score":0.44517243},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44269416},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3440374},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.32937276},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.3233/jifs-236893","pdf_url":null,"source":{"id":"https://openalex.org/S179157397","display_name":"Journal of Intelligent & Fuzzy Systems","issn_l":"1064-1246","issn":["1064-1246","1875-8967"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310318577","host_organization_name":"IOS Press","host_organization_lineage":["https://openalex.org/P4310318577"],"host_organization_lineage_names":["IOS Press"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Quality education","id":"https://metadata.un.org/sdg/4","score":0.71}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W2990609012","https://openalex.org/W3036191284","https://openalex.org/W3118516021","https://openalex.org/W3120245141","https://openalex.org/W3123694149","https://openalex.org/W3126589705","https://openalex.org/W3128572228","https://openalex.org/W3153570448","https://openalex.org/W3204643350","https://openalex.org/W4212772972","https://openalex.org/W4212870478","https://openalex.org/W4214637538","https://openalex.org/W4220679203","https://openalex.org/W4220786059","https://openalex.org/W4220877120","https://openalex.org/W4224234154","https://openalex.org/W4280560080","https://openalex.org/W4281672999","https://openalex.org/W4281772811","https://openalex.org/W4282967731","https://openalex.org/W4283375988","https://openalex.org/W4285038185","https://openalex.org/W4285389334","https://openalex.org/W4289132647","https://openalex.org/W4304606833","https://openalex.org/W4307818633","https://openalex.org/W4310004251","https://openalex.org/W4313892496","https://openalex.org/W4361268030","https://openalex.org/W4385311017","https://openalex.org/W4389085824"],"related_works":["https://openalex.org/W4285504728","https://openalex.org/W4251298892","https://openalex.org/W3133868776","https://openalex.org/W2385444679","https://openalex.org/W2365027229","https://openalex.org/W2360644005","https://openalex.org/W2356013541","https://openalex.org/W2350667299","https://openalex.org/W2059650074","https://openalex.org/W144391745"],"abstract_inverted_index":{"Music":[0,164,261,282],"education":[1,40,67],"has":[2,21,36],"a":[3,23,42,106],"rich":[4],"historical":[5,142],"background.":[6],"Nevertheless,":[7],"the":[8,27,59,146,156,186,204,264,275],"introduction":[9],"of":[10,29,89,159,189,206,266,277],"modern":[11],"teaching":[12,75,158],"methods":[13,76],"is":[14,44,182,194,201],"relatively":[15],"delayed.":[16],"In":[17,114],"recent":[18],"years,":[19],"there":[20],"been":[22],"remarkable":[24],"acceleration":[25],"in":[26,95,102,174,196,280],"advancement":[28],"music":[30,66,143,160],"education.":[31],"A":[32],"promising":[33],"tool":[34],"that":[35,109],"emerged":[37],"to":[38,72,111,135,184],"revolutionize":[39],"as":[41,258],"whole":[43],"Virtual":[45,84],"Reality":[46,85],"(VR)":[47],"technology,":[48],"which":[49],"offers":[50],"immersive":[51],"and":[52,77,167,172,220,229,235,242,246,249,270,286],"interactive":[53],"experiences":[54],"across":[55],"various":[56,96],"disciplines.":[57],"At":[58],"university":[60],"level,":[61],"integrating":[62],"VR":[63,125,271,278,294],"technology":[64,126],"into":[65],"opens":[68],"up":[69],"exciting":[70],"opportunities":[71],"enhance":[73],"practical":[74,157],"provide":[78],"students":[79,134],"with":[80,87,203,254],"enriched":[81],"musical":[82],"experiences.":[83],"together":[86],"Internet":[88],"Things":[90],"(IoT)":[91],"demonstrates":[92],"its":[93,99],"capabilities":[94],"tasks,":[97],"but":[98],"widespread":[100],"availability":[101],"online":[103],"learning":[104,130],"remainders":[105],"pressing":[107],"challenge":[108],"needs":[110],"be":[112,170],"addressed.":[113],"pre-processing,":[115],"it":[116,132],"removes":[117],"noise":[118],"data":[119],"using":[120],"Dynamic":[121],"Context-Sensitive":[122],"Filtering":[123],"(DCSF).":[124],"creates":[127],"an":[128,288],"unparalleled":[129],"environment,":[131],"transporting":[133],"virtual":[136],"concert":[137],"halls,":[138],"recording":[139],"studios,":[140],"or":[141],"venues.":[144],"Hence":[145],"Multiscale":[147],"deep":[148],"bidirectional":[149],"gated":[150],"recurrent":[151],"neural":[152],"Network":[153],"(MDBGNN)":[154],"improves":[155],"course":[161],"concept,":[162],"like":[163,209],"theory,":[165],"harmony,":[166],"rhythm":[168],"can":[169],"visualized":[171],"experienced":[173],"VR.":[175],"Finally,":[176],"Dung":[177],"Beetle":[178],"Optimization":[179],"Algorithm":[180],"(DBOA)":[181],"employed":[183],"optimize":[185],"weight":[187],"parameters":[188],"MDBGNN.":[190],"The":[191,198,222],"proposed":[192,199,223],"MDBGNN-DBO-UMC-VRT":[193,224],"implemented":[195],"Python.":[197],"method":[200,225],"analysed":[202],"help":[205],"performance":[207],"metrics,":[208],"precision,":[210],"accuracy,":[211],"F1-score,":[212],"Recall":[213],"(Sensitivity),":[214],"Specificity,":[215],"Error":[216],"rate,":[217],"Computation":[218],"time":[219],"RoC.":[221],"attains":[226],"13.11%,":[227],"18.12%":[228],"18.73%":[230],"high":[231],"specificity,":[232],"11.13%,":[233],"11.04%":[234],"19.51%":[236],"lower":[237],"computation":[238],"Time,":[239],"15.29%,":[240],"15.365%":[241],"14.551%":[243],"higher":[244,251],"ROC":[245],"13.65%,":[247],"15.98%,":[248],"17.15%":[250],"Accuracy":[252],"compared":[253],"existing":[255],"methods,":[256],"such":[257],"Enhancing":[259],"Vocal":[260],"Teaching":[262,284,291],"through":[263],"Fusion":[265],"Artificial":[267],"Intelligence":[268],"Algorithms":[269],"Technology":[272,279,295],"(CNN-UMC-VRT),":[273],"Exploring":[274],"Efficacy":[276],"Augmenting":[281],"Art":[283],"(BPNN-UMC-VRT)":[285],"Implementing":[287],"Interactive":[289],"Music-Assisted":[290],"System":[292],"Using":[293],"(DNN-UMC-VRT)":[296],"respectively.":[297]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392387468","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":4}],"updated_date":"2025-03-31T02:09:11.656615","created_date":"2024-03-05"}