{"id":"https://openalex.org/W4384697455","doi":"https://doi.org/10.3233/idt-230142","title":"Residual attention network based hybrid convolution network model for lung cancer detection","display_name":"Residual attention network based hybrid convolution network model for lung cancer detection","publication_year":2023,"publication_date":"2023-07-18","ids":{"openalex":"https://openalex.org/W4384697455","doi":"https://doi.org/10.3233/idt-230142"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.3233/idt-230142","pdf_url":null,"source":{"id":"https://openalex.org/S119727669","display_name":"Intelligent Decision Technologies","issn_l":"1872-4981","issn":["1872-4981","1875-8843"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310318577","host_organization_name":"IOS Press","host_organization_lineage":["https://openalex.org/P4310318577"],"host_organization_lineage_names":["IOS Press"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5042675693","display_name":"Prasanalakshmi Balaji","orcid":"https://orcid.org/0000-0002-6882-2233"},"institutions":[{"id":"https://openalex.org/I82952536","display_name":"King Khalid University","ror":"https://ror.org/052kwzs30","country_code":"SA","type":"funder","lineage":["https://openalex.org/I82952536"]}],"countries":["SA"],"is_corresponding":true,"raw_author_name":"Prasanalakshmi Balaji","raw_affiliation_strings":["College of Computer Science, King Khalid University, Abha, Saudi Arabia"],"affiliations":[{"raw_affiliation_string":"College of Computer Science, King Khalid University, Abha, Saudi Arabia","institution_ids":["https://openalex.org/I82952536"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059873336","display_name":"Rajanikanth Aluvalu","orcid":"https://orcid.org/0000-0001-8508-6066"},"institutions":[{"id":"https://openalex.org/I134892692","display_name":"Chaitanya Bharathi Institute of Technology","ror":"https://ror.org/047ymzq84","country_code":"IN","type":"education","lineage":["https://openalex.org/I134892692"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Rajanikanth Aluvalu","raw_affiliation_strings":["Department of IT, Chaitanya Bharathi Institute of Technology, Hyderabad, India"],"affiliations":[{"raw_affiliation_string":"Department of IT, Chaitanya Bharathi Institute of Technology, Hyderabad, India","institution_ids":["https://openalex.org/I134892692"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5104202074","display_name":"Kalpna Sagar","orcid":null},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Kalpna Sagar","raw_affiliation_strings":["KIET Group of Institution, Delhi-NCR, Ghaziabad, India"],"affiliations":[{"raw_affiliation_string":"KIET Group of Institution, Delhi-NCR, Ghaziabad, India","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5042675693"],"corresponding_institution_ids":["https://openalex.org/I82952536"],"apc_list":null,"apc_paid":null,"fwci":0.408,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.562476,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":66,"max":77},"biblio":{"volume":"17","issue":"4","first_page":"1475","last_page":"1488"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9694,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.5694842},{"id":"https://openalex.org/keywords/residual-neural-network","display_name":"Residual neural network","score":0.49880219}],"concepts":[{"id":"https://openalex.org/C2776256026","wikidata":"https://www.wikidata.org/wiki/Q47912","display_name":"Lung cancer","level":2,"score":0.79378426},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.72775084},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6908535},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6328303},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.6023492},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.5694842},{"id":"https://openalex.org/C2944601119","wikidata":"https://www.wikidata.org/wiki/Q43744058","display_name":"Residual neural network","level":3,"score":0.49880219},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4713682},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.44870204},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.44622794},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.19951066},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.18282014},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.1824621},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.13412896},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.062149704}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.3233/idt-230142","pdf_url":null,"source":{"id":"https://openalex.org/S119727669","display_name":"Intelligent Decision Technologies","issn_l":"1872-4981","issn":["1872-4981","1875-8843"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310318577","host_organization_name":"IOS Press","host_organization_lineage":["https://openalex.org/P4310318577"],"host_organization_lineage_names":["IOS Press"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.83,"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W2322371438","https://openalex.org/W2897755679","https://openalex.org/W2945759189","https://openalex.org/W2982642910","https://openalex.org/W2990280407","https://openalex.org/W2990661479","https://openalex.org/W2992717377","https://openalex.org/W3020959930","https://openalex.org/W3028070348","https://openalex.org/W3089084773","https://openalex.org/W3089485449","https://openalex.org/W3105151194","https://openalex.org/W3105373267","https://openalex.org/W3106286734","https://openalex.org/W3121913585","https://openalex.org/W4205917246","https://openalex.org/W4210460429","https://openalex.org/W4220739001","https://openalex.org/W4313556764"],"related_works":["https://openalex.org/W4312417841","https://openalex.org/W4300939921","https://openalex.org/W4226493464","https://openalex.org/W3196952692","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W2984708981","https://openalex.org/W2964954556","https://openalex.org/W2964350391"],"abstract_inverted_index":{"Lung":[0],"cancer":[1,17,32,88,102,111,125],"is":[2,20,93,105],"one":[3],"of":[4,11,98,123,157,176],"the":[5,48,63,69,99,116,118,172],"dangerous":[6],"diseases":[7],"that":[8],"cause":[9],"shortness":[10],"breath":[12],"and":[13,144,167],"death.":[14],"Automatic":[15],"lung":[16,31,44,87,101,110,124],"disease":[18],"identification":[19],"a":[21,72,83,128,155],"challenging":[22],"operation":[23],"for":[24],"researchers.":[25],"This":[26],"paper,":[27],"presents":[28],"an":[29],"effective":[30],"diagnosis":[33],"system":[34,104,126],"using":[35,71,90,148],"deep":[36,84,120],"learning":[37,85],"with":[38,136,139,142,146,152,159,162,165,169,171],"CT":[39,58,91],"images.":[40],"It":[41],"also":[42],"decreases":[43],"cancer\u2019s":[45],"misclassification.":[46],"Initially,":[47],"input":[49],"images":[50,59,92],"are":[51,60],"gathered":[52],"from":[53],"online":[54],"resources.":[55],"The":[56,96,150],"collected":[57],"given":[61],"to":[62,107,115,134],"detection":[64,70,89,103,112,122],"stage.":[65],"Here,":[66],"we":[67],"perform":[68],"Multi":[73],"Serial":[74],"Hybrid":[75],"convolution":[76],"based":[77],"Residual":[78],"Attention":[79],"Network":[80],"(MSHCRAN).":[81],"Using":[82],"framework":[86],"effectively":[94],"detected.":[95],"performance":[97],"developed":[100],"compared":[106,133],"other":[108],"conventional":[109],"models":[113],"According":[114],"analysis,":[117],"implemented":[119],"learning-based":[121],"had":[127],"precision":[129,156,175],"higher":[130],"than":[131],"95.75%":[132],"CNN":[135],"90.04%,":[137],"ResNet":[138,161],"89.62%,":[140],"LSTM":[141,164],"92%,":[143,166],"CRAN":[145,168],"93.4%":[147],"dataset-1.":[149],"analysis":[151],"Dataset-2":[153],"shows":[154],"90.43%":[158],"CNN,":[160],"90.12%,":[163],"93.7%,":[170],"proposed":[173],"method":[174],"95.8%.":[177]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4384697455","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-03-16T09:36:11.321157","created_date":"2023-07-20"}