{"id":"https://openalex.org/W4388679836","doi":"https://doi.org/10.3233/idt-230071","title":"Integration of adaptive segmentation with heuristic-aided novel ensemble-based deep learning model for lung cancer detection using CT images","display_name":"Integration of adaptive segmentation with heuristic-aided novel ensemble-based deep learning model for lung cancer detection using CT images","publication_year":2023,"publication_date":"2023-11-14","ids":{"openalex":"https://openalex.org/W4388679836","doi":"https://doi.org/10.3233/idt-230071"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.3233/idt-230071","pdf_url":null,"source":{"id":"https://openalex.org/S119727669","display_name":"Intelligent Decision Technologies","issn_l":"1872-4981","issn":["1872-4981","1875-8843"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310318577","host_organization_name":"IOS Press","host_organization_lineage":["https://openalex.org/P4310318577"],"host_organization_lineage_names":["IOS Press"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5064061134","display_name":"Potti Nagaraja","orcid":null},"institutions":[{"id":"https://openalex.org/I885392262","display_name":"GITAM University","ror":"https://ror.org/0440p1d37","country_code":"IN","type":"education","lineage":["https://openalex.org/I885392262"]}],"countries":["IN"],"is_corresponding":true,"raw_author_name":"Potti Nagaraja","raw_affiliation_strings":["Electrical Electronics & Communication Engineering, GITAM (Deemed to be University), Hyderabad, India"],"affiliations":[{"raw_affiliation_string":"Electrical Electronics & Communication Engineering, GITAM (Deemed to be University), Hyderabad, India","institution_ids":["https://openalex.org/I885392262"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5037021974","display_name":"Sumanth Kumar Chennupati","orcid":null},"institutions":[{"id":"https://openalex.org/I885392262","display_name":"GITAM University","ror":"https://ror.org/0440p1d37","country_code":"IN","type":"education","lineage":["https://openalex.org/I885392262"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Sumanth Kumar Chennupati","raw_affiliation_strings":["Electrical Electronics & Communication Engineering, GITAM (Deemed to be University), Visakhapatnam, India"],"affiliations":[{"raw_affiliation_string":"Electrical Electronics & Communication Engineering, GITAM (Deemed to be University), Visakhapatnam, India","institution_ids":["https://openalex.org/I885392262"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5064061134"],"corresponding_institution_ids":["https://openalex.org/I885392262"],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":"17","issue":"4","first_page":"1135","last_page":"1160"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9828,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/deep-belief-network","display_name":"Deep belief network","score":0.46604076}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6779487},{"id":"https://openalex.org/C2776256026","wikidata":"https://www.wikidata.org/wiki/Q47912","display_name":"Lung cancer","level":2,"score":0.66963536},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6520653},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.61815727},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5646054},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.516282},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.49706128},{"id":"https://openalex.org/C97385483","wikidata":"https://www.wikidata.org/wiki/Q16954980","display_name":"Deep belief network","level":3,"score":0.46604076},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.45525938},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.43073606},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.4156026},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.33457586},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.237937},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.19877586},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.17084858},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.3233/idt-230071","pdf_url":null,"source":{"id":"https://openalex.org/S119727669","display_name":"Intelligent Decision Technologies","issn_l":"1872-4981","issn":["1872-4981","1875-8843"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310318577","host_organization_name":"IOS Press","host_organization_lineage":["https://openalex.org/P4310318577"],"host_organization_lineage_names":["IOS Press"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/3","display_name":"Good health and well-being","score":0.65}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1992761402","https://openalex.org/W2036390026","https://openalex.org/W2043103662","https://openalex.org/W2078384949","https://openalex.org/W2093041158","https://openalex.org/W2605579287","https://openalex.org/W2612625521","https://openalex.org/W2783620100","https://openalex.org/W2913982653","https://openalex.org/W2914835499","https://openalex.org/W2919979744","https://openalex.org/W2937068764","https://openalex.org/W2944008871","https://openalex.org/W2945759189","https://openalex.org/W2945800982","https://openalex.org/W2983079723","https://openalex.org/W2990280407","https://openalex.org/W3003511227","https://openalex.org/W3020959930","https://openalex.org/W3023006820","https://openalex.org/W3029351084","https://openalex.org/W3033469621","https://openalex.org/W3034920607","https://openalex.org/W3081397562","https://openalex.org/W3089485449","https://openalex.org/W3095321132","https://openalex.org/W3102648527","https://openalex.org/W3134305302","https://openalex.org/W3157418653","https://openalex.org/W3166008498","https://openalex.org/W3215640350","https://openalex.org/W64515469"],"related_works":["https://openalex.org/W4327774331","https://openalex.org/W4315434538","https://openalex.org/W3136021864","https://openalex.org/W3082895349","https://openalex.org/W3004069267","https://openalex.org/W2585432886","https://openalex.org/W2572334665","https://openalex.org/W2565516711","https://openalex.org/W2165991108","https://openalex.org/W1522196789"],"abstract_inverted_index":{"In":[0,145],"recent":[1],"days":[2],"people":[3],"are":[4,52,62,175,185,228,265],"affected":[5,121],"with":[6,162,220],"lung":[7,41,85,122,159,293],"cancer":[8,24,30,47,78,160],"in,":[9],"and":[10,59,79,97,100,110,131,202,256,276],"the":[11,26,40,55,63,68,75,84,89,91,105,111,118,126,132,163,178,183,190,221,226,238,263,281,284],"severe":[12],"stage":[13],"of":[14,120,134,165,283,292],"this":[15,101],"disease":[16],"leads":[17],"to":[18,32,45,104,116,125,141,147,289],"death":[19],"for":[20,158,189],"human":[21],"beings.":[22],"Lung":[23],"is":[25,139,156,195,211,218,240,249],"second":[27],"most":[28,64],"typical":[29],"type":[31],"be":[33,43],"found":[34],"worldwide.":[35],"Pulmonary":[36],"nodules":[37,51,86],"present":[38,87],"in":[39,54,77,88,213,261],"can":[42,72],"used":[44],"identify":[46,74],"metastases":[48],"because":[49,67],"these":[50,143],"visible":[53],"lungs.":[56],"Cancer":[57],"diagnosis":[58],"region":[60,223],"segmentation":[61,209],"important":[65],"procedures":[66],"prosperous":[69],"prediction-affected":[70],"area":[71],"accurately":[73],"variation":[76],"normal":[80],"cell.":[81],"By":[82],"analyzing":[83],"image,":[90],"radiologists":[92,112],"missed":[93],"several":[94],"useful":[95],"low-density":[96],"small":[98],"nodules,":[99,136],"may":[102],"tend":[103],"diagnose":[106],"process":[107],"very":[108],"difficult,":[109],"needs":[113],"more":[114],"time":[115,130],"decide":[117],"prediction":[119],"nodules.":[123],"Due":[124],"radiologist\u2019s":[127],"physical":[128],"inspection":[129],"possibility":[133],"missing":[135],"automatic":[137],"identification":[138],"needed":[140],"address":[142],"issues.":[144],"order":[146],"achieve":[148],"this,":[149],"a":[150,206],"new":[151],"hybrid":[152,208],"deep":[153],"learning":[154],"model":[155,210,287],"developed":[157],"detection":[161,286],"help":[164],"CT":[166,173],"images.":[167],"At":[168,236],"first,":[169],"input":[170],"images":[171,174,184],"like":[172],"gathered":[176],"from":[177],"standard":[179],"data":[180],"sources.":[181],"Once":[182],"collected,":[186],"it":[187,194],"undergoes":[188],"pre-processing":[191],"stage,":[192],"where":[193],"accomplished":[196,241],"by":[197,230,242,251,268],"Weighted":[198],"mean":[199,203],"histogram":[200],"equalization":[201],"filtering.":[204],"Consequently,":[205],"novel":[207],"developed,":[212],"which":[214,262],"Adaptive":[215],"fuzzy":[216],"clustering":[217],"incorporated":[219],"Optimized":[222],"growing;":[224],"here,":[225],"parameters":[227],"optimized":[229],"Improved":[231],"Harris":[232],"Hawks":[233],"Optimization":[234],"(IHHO).":[235],"last,":[237],"classification":[239],"Ensemble-based":[243],"Deep":[244],"Learning":[245],"Model":[246],"(EDLM)":[247],"that":[248],"constructed":[250],"VGG-16,":[252],"Residual":[253],"Network":[254],"(ResNet)":[255],"Gated":[257],"Recurrent":[258],"Unit":[259],"(GRU),":[260],"hyperparameters":[264],"tuned":[266],"optimally":[267],"an":[269],"improved":[270],"HHO":[271],"algorithm.":[272],"The":[273],"experimental":[274],"outcomes":[275],"its":[277],"performance":[278],"analysis":[279],"elucidate":[280],"effectiveness":[282],"suggested":[285],"aids":[288],"early":[290],"recognition":[291],"cancer.":[294]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388679836","counts_by_year":[],"updated_date":"2025-01-05T01:08:02.613368","created_date":"2023-11-15"}