{"id":"https://openalex.org/W4311344045","doi":"https://doi.org/10.3233/idt-220173","title":"AirBERT: A fine-tuned language representation model for airlines tweet sentiment analysis","display_name":"AirBERT: A fine-tuned language representation model for airlines tweet sentiment analysis","publication_year":2022,"publication_date":"2022-12-13","ids":{"openalex":"https://openalex.org/W4311344045","doi":"https://doi.org/10.3233/idt-220173"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.3233/idt-220173","pdf_url":null,"source":{"id":"https://openalex.org/S119727669","display_name":"Intelligent Decision Technologies","issn_l":"1872-4981","issn":["1872-4981","1875-8843"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310318577","host_organization_name":"IOS Press","host_organization_lineage":["https://openalex.org/P4310318577"],"host_organization_lineage_names":["IOS Press"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083563373","display_name":"Anuradha Yenkikar","orcid":"https://orcid.org/0000-0002-9086-9695"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Anuradha Yenkikar","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5112598534","display_name":"C. Narendra Babu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"C. Narendra Babu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.444,"has_fulltext":false,"cited_by_count":10,"citation_normalized_percentile":{"value":0.584416,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":"17","issue":"2","first_page":"435","last_page":"455"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10609","display_name":"Digital Marketing and Social Media","score":0.973,"subfield":{"id":"https://openalex.org/subfields/3312","display_name":"Sociology and Political Science"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9667,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/word2vec","display_name":"Word2vec","score":0.7317512},{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.6452967},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.5358589}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7402244},{"id":"https://openalex.org/C2776461190","wikidata":"https://www.wikidata.org/wiki/Q22673982","display_name":"Word2vec","level":3,"score":0.7317512},{"id":"https://openalex.org/C66402592","wikidata":"https://www.wikidata.org/wiki/Q2271421","display_name":"Sentiment analysis","level":2,"score":0.6452967},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.6024849},{"id":"https://openalex.org/C518677369","wikidata":"https://www.wikidata.org/wiki/Q202833","display_name":"Social media","level":2,"score":0.54656607},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5428959},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.5358589},{"id":"https://openalex.org/C171686336","wikidata":"https://www.wikidata.org/wiki/Q3532085","display_name":"Topic model","level":2,"score":0.46367168},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.45807242},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.45045617},{"id":"https://openalex.org/C500882744","wikidata":"https://www.wikidata.org/wiki/Q269236","display_name":"Latent Dirichlet allocation","level":3,"score":0.44161656},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.41651338},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.40861088},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.40791416},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.19924438},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.3233/idt-220173","pdf_url":null,"source":{"id":"https://openalex.org/S119727669","display_name":"Intelligent Decision Technologies","issn_l":"1872-4981","issn":["1872-4981","1875-8843"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310318577","host_organization_name":"IOS Press","host_organization_lineage":["https://openalex.org/P4310318577"],"host_organization_lineage_names":["IOS Press"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/3","score":0.56,"display_name":"Good health and well-being"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W2119505024","https://openalex.org/W2215041843","https://openalex.org/W2538942427","https://openalex.org/W2775232093","https://openalex.org/W2809788217","https://openalex.org/W2956699707","https://openalex.org/W2988412621","https://openalex.org/W2997895713","https://openalex.org/W2999874011","https://openalex.org/W3014214656","https://openalex.org/W3046595155","https://openalex.org/W3093543164","https://openalex.org/W3104569204","https://openalex.org/W3132573559","https://openalex.org/W3133280145","https://openalex.org/W3153489682","https://openalex.org/W3159629268","https://openalex.org/W3165725773","https://openalex.org/W4206615258","https://openalex.org/W4214754100","https://openalex.org/W4246522083","https://openalex.org/W4280589899","https://openalex.org/W4286912371","https://openalex.org/W4289868283","https://openalex.org/W4296392364"],"related_works":["https://openalex.org/W4389543811","https://openalex.org/W4315588616","https://openalex.org/W4312773271","https://openalex.org/W3005513013","https://openalex.org/W2962686197","https://openalex.org/W2888805565","https://openalex.org/W2769501189","https://openalex.org/W2611137333","https://openalex.org/W2594674086","https://openalex.org/W2207653751"],"abstract_inverted_index":{"Airlines":[0],"operate":[1],"in":[2,44],"a":[3,52,69,107,214],"competitive":[4],"marketplace":[5],"and":[6,15,20,43,95,100,142,159,168,195,208],"must":[7],"upgrade":[8],"their":[9],"services":[10],"to":[11,40,56,212],"meet":[12],"customer":[13,215],"safety":[14],"comfort.":[16],"Post-pandemic,":[17],"the":[18,27,135,138,149,163,180,185],"government":[19],"airlines":[21,64,158,182,207],"resumed":[22],"flights":[23],"with":[24,98,132,152,175],"many":[25],"restrictions,":[26],"impact":[28],"which":[29],"is":[30,54,72,104,120,125],"unexplored.":[31],"An":[32],"increasing":[33],"number":[34],"of":[35,47,80,155,166],"customers":[36],"use":[37],"social":[38],"media":[39],"leave":[41],"reviews":[42,79,170],"this":[45,67],"age":[46],"Machine":[48],"Learning":[49],"(ML),":[50],"if":[51],"model":[53,112,187,199,202],"available":[55],"automatically":[57],"polarize":[58],"flyer":[59],"sentiments,":[60],"it":[61,124],"can":[62,203],"help":[63],"upscale.":[65],"In":[66,172],"work,":[68],"custom":[70],"dataset":[71],"scraped":[73],"from":[74,118],"Twitter":[75],"by":[76,206],"including":[77],"online":[78],"five":[81],"Indian":[82],"airlines.":[83],"Multiclass":[84],"sentiment":[85],"analysis":[86],"using":[87],"three":[88,176],"classifiers,":[89],"support":[90],"vector":[91],"machine,":[92],"K-nearest":[93],"neighbor":[94],"random":[96],"forest":[97],"word2vec":[99],"TF-IDF":[101,133],"word":[102],"embeddings":[103],"implemented.":[105],"AirBERT,":[106],"fine-tuned":[108],"deep":[109],"learning":[110],"attention":[111],"based":[113],"on":[114,128,179,191],"bidirectional":[115],"encoder":[116],"representation":[117],"transformers":[119],"proposed.":[121],"From":[122],"results,":[123],"observed":[126],"that":[127],"ML,":[129],"Random":[130],"Forest":[131],"performs":[134],"best":[136],"but":[137],"graphical":[139],"processing":[140],"unit":[141],"domain":[143,193],"corpora":[144,194],"trained":[145,190],"AirBERT":[146],"outperforms":[147,188],"all":[148],"other":[150,209],"models":[151,178],"an":[153],"accuracy":[154],"91%.":[156],"Indigo":[157],"Jet":[160],"Airways":[161],"received":[162],"maximum":[164],"percentage":[165],"positive":[167],"negative":[169],"respectively.":[171],"performance":[173],"comparison":[174],"existing":[177],"USA":[181],"tweets":[183],"dataset,":[184],"proposed":[186],"others":[189],"general":[192],"matches":[196],"state-of-the-art":[197],"TweetBERTv2":[198],"accuracy.":[200],"The":[201],"be":[204],"deployed":[205],"service":[210],"industries":[211],"implement":[213],"relationship":[216],"management":[217],"(CRM)":[218],"system.":[219]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4311344045","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":4}],"updated_date":"2025-03-20T23:26:08.691556","created_date":"2022-12-25"}