{"id":"https://openalex.org/W4206403994","doi":"https://doi.org/10.3233/faia210355","title":"Chapter 8. A Constraint-Based Approach to Learning and Reasoning","display_name":"Chapter 8. A Constraint-Based Approach to Learning and Reasoning","publication_year":2021,"publication_date":"2021-12-22","ids":{"openalex":"https://openalex.org/W4206403994","doi":"https://doi.org/10.3233/faia210355"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.3233/faia210355","pdf_url":null,"source":{"id":"https://openalex.org/S4210201731","display_name":"Frontiers in artificial intelligence and applications","issn_l":"0922-6389","issn":["0922-6389","1879-8314"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5109267259","display_name":"Michelangelo Diligenti","orcid":null},"institutions":[{"id":"https://openalex.org/I102064193","display_name":"University of Siena","ror":"https://ror.org/01tevnk56","country_code":"IT","type":"education","lineage":["https://openalex.org/I102064193"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Michelangelo Diligenti","raw_affiliation_strings":["DIISM, University of Siena, Italy"],"affiliations":[{"raw_affiliation_string":"DIISM, University of Siena, Italy","institution_ids":["https://openalex.org/I102064193"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058772124","display_name":"Francesco Giannini","orcid":"https://orcid.org/0000-0001-8492-8110"},"institutions":[{"id":"https://openalex.org/I102064193","display_name":"University of Siena","ror":"https://ror.org/01tevnk56","country_code":"IT","type":"education","lineage":["https://openalex.org/I102064193"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Francesco Giannini","raw_affiliation_strings":["DIISM, University of Siena, Italy"],"affiliations":[{"raw_affiliation_string":"DIISM, University of Siena, Italy","institution_ids":["https://openalex.org/I102064193"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022658803","display_name":"Marco Gori","orcid":"https://orcid.org/0000-0001-6337-5430"},"institutions":[{"id":"https://openalex.org/I102064193","display_name":"University of Siena","ror":"https://ror.org/01tevnk56","country_code":"IT","type":"education","lineage":["https://openalex.org/I102064193"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Marco Gori","raw_affiliation_strings":["DIISM, University of Siena, Italy"],"affiliations":[{"raw_affiliation_string":"DIISM, University of Siena, Italy","institution_ids":["https://openalex.org/I102064193"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080411641","display_name":"Marco Maggini","orcid":"https://orcid.org/0000-0002-6428-1265"},"institutions":[{"id":"https://openalex.org/I102064193","display_name":"University of Siena","ror":"https://ror.org/01tevnk56","country_code":"IT","type":"education","lineage":["https://openalex.org/I102064193"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Marco Maggini","raw_affiliation_strings":["DIISM, University of Siena, Italy"],"affiliations":[{"raw_affiliation_string":"DIISM, University of Siena, Italy","institution_ids":["https://openalex.org/I102064193"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5005466305","display_name":"Giuseppe Marra","orcid":"https://orcid.org/0000-0001-5940-9562"},"institutions":[{"id":"https://openalex.org/I99464096","display_name":"KU Leuven","ror":"https://ror.org/05f950310","country_code":"BE","type":"education","lineage":["https://openalex.org/I99464096"]}],"countries":["BE"],"is_corresponding":false,"raw_author_name":"Giuseppe Marra","raw_affiliation_strings":["KU Leuven, Belgium"],"affiliations":[{"raw_affiliation_string":"KU Leuven, Belgium","institution_ids":["https://openalex.org/I99464096"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.324,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.448471,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":57,"max":66},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.7563,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.7563,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/semantic-reasoner","display_name":"Semantic reasoner","score":0.6693089},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.5818661},{"id":"https://openalex.org/keywords/inductive-logic-programming","display_name":"Inductive logic programming","score":0.44723043},{"id":"https://openalex.org/keywords/graphical-model","display_name":"Graphical model","score":0.43627632}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6922717},{"id":"https://openalex.org/C9616225","wikidata":"https://www.wikidata.org/wiki/Q3929429","display_name":"Semantic reasoner","level":2,"score":0.6693089},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6286844},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.5818661},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.4823753},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4583009},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.45820522},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.45806578},{"id":"https://openalex.org/C2779382394","wikidata":"https://www.wikidata.org/wiki/Q1464197","display_name":"Inductive logic programming","level":2,"score":0.44723043},{"id":"https://openalex.org/C155846161","wikidata":"https://www.wikidata.org/wiki/Q1143367","display_name":"Graphical model","level":2,"score":0.43627632},{"id":"https://openalex.org/C207685749","wikidata":"https://www.wikidata.org/wiki/Q2088941","display_name":"Domain knowledge","level":2,"score":0.43002042},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3493851},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.3233/faia210355","pdf_url":null,"source":{"id":"https://openalex.org/S4210201731","display_name":"Frontiers in artificial intelligence and applications","issn_l":"0922-6389","issn":["0922-6389","1879-8314"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W335786557","https://openalex.org/W2741941615","https://openalex.org/W2407348918","https://openalex.org/W2403989689","https://openalex.org/W2340946562","https://openalex.org/W2106246118","https://openalex.org/W2065446266","https://openalex.org/W2043069798","https://openalex.org/W1582755659","https://openalex.org/W1525578575"],"abstract_inverted_index":{"Neural-symbolic":[0],"models":[1,142,153],"bridge":[2],"the":[3,70,73,84,116,179,182,185,188,203,218,221,224,232,238,252,314,317],"gap":[4],"between":[5,271],"sub-symbolic":[6],"and":[7,64,164,194,249,255,273,285,307],"symbolic":[8,32,267],"approaches,":[9,17,33],"both":[10],"of":[11,25,41,53,72,97,100,130,181,205,213,220,235,240,245,250,258,316],"which":[12],"have":[13],"significant":[14],"limitations.":[15],"Sub-symbolic":[16],"like":[18,34,103],"neural":[19,107],"networks,":[20],"require":[21,37],"a":[22,38,58,98,127,171,210,300],"large":[23,51],"amount":[24,40],"labeled":[26],"data":[27,244],"to":[28,50,61,89,312],"be":[29,144,196,283,294],"successful,":[30],"whereas":[31],"logic":[35,124,214],"reasoners,":[36],"small":[39],"prior":[42,75,190],"domain":[43,129],"knowledge":[44,76,191,215],"but":[45],"do":[46],"not":[47,177],"easily":[48],"scale":[49],"collections":[52],"data.":[54,268],"This":[55],"chapter":[56],"presents":[57],"general":[59,277],"approach":[60],"integrate":[62],"learning":[63,225,272],"reasoning":[65,125,265,274],"that":[66,175,187],"is":[67,135,170,192,275,304],"based":[68],"on":[69,83,266],"translation":[71],"available":[74],"into":[77],"an":[78],"undirected":[79],"graphical":[80,85],"model.":[81],"Potentials":[82],"model":[86],"are":[87,154,310],"designed":[88],"accommodate":[90],"dependencies":[91],"among":[92],"random":[93],"variables":[94],"by":[95,106,146,216],"means":[96],"set":[99],"trainable":[101],"functions,":[102],"those":[104],"computed":[105],"networks.":[108],"The":[109,269],"resulting":[110],"neural-symbolic":[111,173],"framework":[112],"can":[113,143,282,293],"effectively":[114],"leverage":[115],"training":[117,241],"data,":[118],"when":[119,262],"available,":[120],"while":[121,208],"exploiting":[122],"high-level":[123],"in":[126,156],"certain":[128],"discourse.":[131],"Although":[132],"exact":[133,297],"inference":[134,298],"intractable":[136],"within":[137,299],"this":[138,157],"model,":[139,174],"different":[140,148,308],"tractable":[141],"derived":[145],"making":[147],"assumptions.":[149],"In":[150],"particular,":[151],"three":[152],"presented":[155],"chapter:":[158],"Semantic-Based":[159,168,206],"Regularization,":[160,207],"Deep":[161,199],"Logic":[162,200,260,292],"Models":[163,201],"Relational":[165,228,301],"Neural":[166,229,302],"Machines.":[167],"Regularization":[169],"scalable":[172],"does":[176],"adapt":[178],"parameters":[180,219],"reasoner,":[183],"under":[184],"assumption":[186],"provided":[189],"correct":[193],"must":[195],"exactly":[197],"satisfied.":[198],"preserve":[202],"scalability":[204,315],"providing":[209],"flexible":[211],"exploitation":[212],"co-training":[217],"reasoner":[222],"during":[223],"procedure.":[226],"Finally,":[227],"Machines":[230],"provide":[231],"fundamental":[233],"advantages":[234],"perfectly":[236],"replicating":[237],"effectiveness":[239],"from":[242],"supervised":[243],"standard":[246],"deep":[247],"architectures,":[248],"preserving":[251],"same":[253],"generality":[254],"expressive":[256],"power":[257],"Markov":[259],"Networks,":[261],"considering":[263],"pure":[264],"bonding":[270],"very":[276],"as":[278],"any":[279,286],"(deep)":[280],"learner":[281],"adopted,":[284],"output":[287],"structure":[288],"expressed":[289],"via":[290],"First-Order":[291],"integrated.":[295],"However,":[296],"Machine":[303],"still":[305],"intractable,":[306],"factorizations":[309],"discussed":[311],"increase":[313],"approach.":[318]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4206403994","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-22T17:37:58.141446","created_date":"2022-01-26"}