{"id":"https://openalex.org/W2251662771","doi":"https://doi.org/10.3115/v1/w15-0612","title":"Identifying Patterns For Short Answer Scoring Using Graph-based Lexico-Semantic Text Matching","display_name":"Identifying Patterns For Short Answer Scoring Using Graph-based Lexico-Semantic Text Matching","publication_year":2015,"publication_date":"2015-01-01","ids":{"openalex":"https://openalex.org/W2251662771","doi":"https://doi.org/10.3115/v1/w15-0612","mag":"2251662771"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3115/v1/w15-0612","pdf_url":"https://www.aclweb.org/anthology/W15-0612.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://www.aclweb.org/anthology/W15-0612.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5111086224","display_name":"Lakshmi Ramachandran","orcid":"https://orcid.org/0000-0002-9399-7684"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lakshmi Ramachandran","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101579966","display_name":"Jian Cheng","orcid":"https://orcid.org/0000-0002-3755-2517"},"institutions":[{"id":"https://openalex.org/I4210117690","display_name":"Analytic Measures (United States)","ror":"https://ror.org/02gqfbn37","country_code":"US","type":"company","lineage":["https://openalex.org/I4210117690"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jian Cheng","raw_affiliation_strings":["Analytic Measures Inc.,"],"affiliations":[{"raw_affiliation_string":"Analytic Measures Inc.,","institution_ids":["https://openalex.org/I4210117690"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5082669876","display_name":"Peter W. Foltz","orcid":"https://orcid.org/0000-0002-0281-8741"},"institutions":[{"id":"https://openalex.org/I2802236040","display_name":"University of Colorado System","ror":"https://ror.org/00jc20583","country_code":"US","type":"education","lineage":["https://openalex.org/I2802236040"]}],"countries":["US"],"is_corresponding":true,"raw_author_name":"Peter Foltz","raw_affiliation_strings":["University of Colorado"],"affiliations":[{"raw_affiliation_string":"University of Colorado","institution_ids":["https://openalex.org/I2802236040"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5082669876"],"corresponding_institution_ids":["https://openalex.org/I2802236040"],"apc_list":null,"apc_paid":null,"fwci":3.005,"has_fulltext":false,"cited_by_count":69,"citation_normalized_percentile":{"value":0.934848,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":"97","last_page":"106"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10181","display_name":"Statistical Machine Translation and Natural Language Processing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10181","display_name":"Statistical Machine Translation and Natural Language Processing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10260","display_name":"Empirical Studies in Software Engineering","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rubric","display_name":"Rubric","score":0.766173},{"id":"https://openalex.org/keywords/part-of-speech-tagging","display_name":"Part-of-Speech Tagging","score":0.540269},{"id":"https://openalex.org/keywords/word-representation","display_name":"Word Representation","score":0.534828},{"id":"https://openalex.org/keywords/language-modeling","display_name":"Language Modeling","score":0.531085},{"id":"https://openalex.org/keywords/topic-modeling","display_name":"Topic Modeling","score":0.528059},{"id":"https://openalex.org/keywords/syntax-based-translation-models","display_name":"Syntax-based Translation Models","score":0.515309}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.85202587},{"id":"https://openalex.org/C111640148","wikidata":"https://www.wikidata.org/wiki/Q847349","display_name":"Rubric","level":2,"score":0.766173},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.5946407},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.58668983},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.45044366},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.44548243},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.41931123},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39615142},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.39381546},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.1684984},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.07555592},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C94375191","wikidata":"https://www.wikidata.org/wiki/Q11205","display_name":"Arithmetic","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.3115/v1/w15-0612","pdf_url":"https://www.aclweb.org/anthology/W15-0612.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.3115/v1/w15-0612","pdf_url":"https://www.aclweb.org/anthology/W15-0612.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.79}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W145835004","https://openalex.org/W1497629641","https://openalex.org/W1996430422","https://openalex.org/W2001056218","https://openalex.org/W2024774307","https://openalex.org/W2038721957","https://openalex.org/W2056874695","https://openalex.org/W2058013187","https://openalex.org/W2064954915","https://openalex.org/W2098162425","https://openalex.org/W2099685860","https://openalex.org/W2115758952","https://openalex.org/W2120779048","https://openalex.org/W2133436118","https://openalex.org/W2158240052","https://openalex.org/W2170682101","https://openalex.org/W2251692302","https://openalex.org/W2414642490","https://openalex.org/W2911964244","https://openalex.org/W3118967241","https://openalex.org/W4240226775","https://openalex.org/W43048615"],"related_works":["https://openalex.org/W4390610055","https://openalex.org/W4379053243","https://openalex.org/W4321385307","https://openalex.org/W3199392376","https://openalex.org/W3021020626","https://openalex.org/W2955201676","https://openalex.org/W2330342969","https://openalex.org/W2296205523","https://openalex.org/W2153005530","https://openalex.org/W1987813225"],"abstract_inverted_index":{"Short":[0,92],"answer":[1,102],"scoring":[2],"systems":[3],"typically":[4],"use":[5],"regular":[6,30],"expressions,":[7],"templates":[8],"or":[9,19],"logic":[10],"expressions":[11,31],"to":[12,55,72,128],"detect":[13],"the":[14,90,118,129],"presence":[15],"of":[16,75],"specific":[17],"terms":[18],"concepts":[20],"among":[21],"student":[22,65],"responses.Previous":[23],"work":[24,45],"has":[25],"shown":[26],"that":[27,51,111],"manually":[28],"developed":[29],"can":[32,39,79],"provide":[33],"effective":[34],"scoring,":[35],"however":[36],"manual":[37],"development":[38],"be":[40],"quite":[41],"time":[42],"consuming.In":[43],"this":[44],"we":[46],"present":[47],"a":[48,100,126],"new":[49],"approach":[50,67,85,114],"uses":[52,69],"word-order":[53],"graphs":[54],"identify":[56],"important":[57],"patterns":[58],"from":[59],"humanprovided":[60],"rubric":[61],"texts":[62],"and":[63,97,123],"top-scoring":[64],"answers.The":[66],"also":[68],"semantic":[70],"metrics":[71],"determine":[73],"groups":[74],"related":[76],"words,":[77],"which":[78],"represent":[80],"alternative":[81],"answers.We":[82],"evaluate":[83],"our":[84,112],"on":[86],"two":[87],"datasets:":[88],"(1)":[89],"Kaggle":[91,121],"Answer":[93],"dataset":[94,103],"(ASAP-SAS,":[95],"2012),":[96],"(":[98],"2)":[99],"short":[101],"provided":[104],"by":[105],"Mohler":[106,130],"et":[107],"al.":[108],"(2011).We":[109],"show":[110],"automated":[113],"performs":[115],"better":[116],"than":[117],"best":[119],"performing":[120],"entry":[122],"generalizes":[124],"as":[125],"method":[127],"dataset.":[131]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2251662771","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":7},{"year":2022,"cited_by_count":9},{"year":2021,"cited_by_count":10},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":10},{"year":2018,"cited_by_count":7},{"year":2017,"cited_by_count":7},{"year":2016,"cited_by_count":8}],"updated_date":"2024-11-17T20:33:44.171228","created_date":"2016-06-24"}