{"id":"https://openalex.org/W4385763996","doi":"https://doi.org/10.24963/ijcai.2023/748","title":"Curriculum Graph Machine Learning: A Survey","display_name":"Curriculum Graph Machine Learning: A Survey","publication_year":2023,"publication_date":"2023-08-01","ids":{"openalex":"https://openalex.org/W4385763996","doi":"https://doi.org/10.24963/ijcai.2023/748"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2023/748","pdf_url":"https://www.ijcai.org/proceedings/2023/0748.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://www.ijcai.org/proceedings/2023/0748.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100369545","display_name":"Haoyang Li","orcid":"https://orcid.org/0000-0003-3544-5563"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haoyang Li","raw_affiliation_strings":["Department of Computer Science and Technology, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100757553","display_name":"Xin Wang","orcid":"https://orcid.org/0000-0001-9448-7689"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xin Wang","raw_affiliation_strings":["Beijing National Research Center for Information Science and Technology, Tsinghua University","Department of Computer Science and Technology, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Beijing National Research Center for Information Science and Technology, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]},{"raw_affiliation_string":"Department of Computer Science and Technology, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100339293","display_name":"Wenwu Zhu","orcid":"https://orcid.org/0000-0003-2236-9290"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenwu Zhu","raw_affiliation_strings":["Beijing National Research Center for Information Science and Technology, Tsinghua University","Department of Computer Science and Technology, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Beijing National Research Center for Information Science and Technology, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]},{"raw_affiliation_string":"Department of Computer Science and Technology, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.708,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":10,"citation_normalized_percentile":{"value":0.790601,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":"6674","last_page":"6682"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12292","display_name":"Graph Theory and Algorithms","score":0.9872,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9729,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75863326},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6369128},{"id":"https://openalex.org/C47177190","wikidata":"https://www.wikidata.org/wiki/Q207137","display_name":"Curriculum","level":2,"score":0.5836792},{"id":"https://openalex.org/C94124525","wikidata":"https://www.wikidata.org/wiki/Q912550","display_name":"Categorization","level":2,"score":0.56842893},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5667945},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.55736727},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.45672876},{"id":"https://openalex.org/C176225458","wikidata":"https://www.wikidata.org/wiki/Q595971","display_name":"Graph database","level":3,"score":0.45595884},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C19417346","wikidata":"https://www.wikidata.org/wiki/Q7922","display_name":"Pedagogy","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2023/748","pdf_url":"https://www.ijcai.org/proceedings/2023/0748.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2302.02926","pdf_url":"http://arxiv.org/pdf/2302.02926","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2023/748","pdf_url":"https://www.ijcai.org/proceedings/2023/0748.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.46,"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":62,"referenced_works":["https://openalex.org/W1990313671","https://openalex.org/W2015731569","https://openalex.org/W2096630263","https://openalex.org/W2149288670","https://openalex.org/W2151834591","https://openalex.org/W2485689859","https://openalex.org/W2587648059","https://openalex.org/W2606780347","https://openalex.org/W2759136286","https://openalex.org/W2782554945","https://openalex.org/W2785355717","https://openalex.org/W2887842788","https://openalex.org/W2923622379","https://openalex.org/W2950695840","https://openalex.org/W2951954464","https://openalex.org/W2962746461","https://openalex.org/W2962975498","https://openalex.org/W2963102641","https://openalex.org/W2964015378","https://openalex.org/W2979805229","https://openalex.org/W3005552578","https://openalex.org/W3007913393","https://openalex.org/W3010512657","https://openalex.org/W3011667710","https://openalex.org/W3049131298","https://openalex.org/W3080253043","https://openalex.org/W3095602948","https://openalex.org/W3097300053","https://openalex.org/W3098840291","https://openalex.org/W3100078588","https://openalex.org/W3100848837","https://openalex.org/W3102500902","https://openalex.org/W3105402527","https://openalex.org/W3123742938","https://openalex.org/W3142849873","https://openalex.org/W3183605589","https://openalex.org/W3184489105","https://openalex.org/W3188982020","https://openalex.org/W3205071568","https://openalex.org/W3212048067","https://openalex.org/W3214511341","https://openalex.org/W4200635484","https://openalex.org/W4210257598","https://openalex.org/W4214862906","https://openalex.org/W4221123674","https://openalex.org/W4221157965","https://openalex.org/W4225771441","https://openalex.org/W4226340499","https://openalex.org/W4280653690","https://openalex.org/W4288275971","https://openalex.org/W4289389616","https://openalex.org/W4292483811","https://openalex.org/W4292955061","https://openalex.org/W4294558607","https://openalex.org/W4297733535","https://openalex.org/W4304080781","https://openalex.org/W4307478975","https://openalex.org/W4313231274","https://openalex.org/W4321488441","https://openalex.org/W4367047105","https://openalex.org/W4382466430","https://openalex.org/W4390619961"],"related_works":["https://openalex.org/W4311804456","https://openalex.org/W3115442681","https://openalex.org/W2972311463","https://openalex.org/W2735662278","https://openalex.org/W2623658258","https://openalex.org/W2391000461","https://openalex.org/W2382615723","https://openalex.org/W2165912799","https://openalex.org/W2007838763","https://openalex.org/W1987484445"],"abstract_inverted_index":{"Graph":[0,102,123],"machine":[1,19,66,76,147,180],"learning":[2,20,67,77,148],"has":[3],"been":[4],"extensively":[5],"studied":[6],"in":[7,13,30,94,112],"both":[8],"academia":[9],"and":[10,50,78,82,104,125,134,153],"industry.":[11],"However,":[12],"the":[14,43,55,72,90,119,166,174],"literature,":[15],"most":[16],"existing":[17,136],"graph":[18,47,65,75,146,179],"models":[21],"are":[22],"designed":[23],"to":[24,41],"conduct":[25],"training":[26,52],"with":[27],"data":[28,48],"samples":[29,49],"a":[31,106],"random":[32],"order,":[33],"which":[34,70],"may":[35],"suffer":[36],"from":[37,89],"suboptimal":[38],"performance":[39],"due":[40],"ignoring":[42],"importance":[44],"of":[45,74,87,109,122,145,168],"different":[46],"their":[51],"orders":[53],"for":[54,177],"model":[56],"optimization":[57],"status.":[58],"To":[59,165],"tackle":[60],"this":[61,95,113,171],"critical":[62],"problem,":[63],"curriculum":[64,79,178],"(Graph":[68],"CL),":[69],"integrates":[71],"strength":[73],"learning,":[80],"arises":[81],"attracts":[83],"an":[84],"increasing":[85],"amount":[86],"attention":[88],"research":[91,163],"community.":[92],"Therefore,":[93],"paper,":[96],"we":[97,116,132,157],"comprehensively":[98],"overview":[99],"approaches":[100],"on":[101,142,161],"CL":[103,124],"present":[105],"detailed":[107],"survey":[108,176],"recent":[110],"advances":[111],"direction.":[114],"Specifically,":[115],"first":[117,175],"discuss":[118],"key":[120],"challenges":[121],"provide":[126],"its":[127],"formal":[128],"problem":[129],"definition.":[130],"Then,":[131],"categorize":[133],"summarize":[135],"methods":[137],"into":[138],"three":[139,143],"classes":[140],"based":[141],"kinds":[144],"tasks,":[149],"i.e.,":[150],"node-level,":[151],"link-level,":[152],"graph-level":[154],"tasks.":[155],"Finally,":[156],"share":[158],"our":[159,169],"thoughts":[160],"future":[162],"directions.":[164],"best":[167],"knowledge,":[170],"paper":[172],"is":[173],"learning.":[181]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385763996","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":9}],"updated_date":"2025-04-15T16:40:59.535304","created_date":"2023-08-12"}