{"id":"https://openalex.org/W4285603647","doi":"https://doi.org/10.24963/ijcai.2022/485","title":"Initializing Then Refining: A Simple Graph Attribute Imputation Network","display_name":"Initializing Then Refining: A Simple Graph Attribute Imputation Network","publication_year":2022,"publication_date":"2022-07-01","ids":{"openalex":"https://openalex.org/W4285603647","doi":"https://doi.org/10.24963/ijcai.2022/485"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2022/485","pdf_url":"https://www.ijcai.org/proceedings/2022/0485.pdf","source":{"id":"https://openalex.org/S4363608755","display_name":"Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://www.ijcai.org/proceedings/2022/0485.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5085607536","display_name":"Wenxuan Tu","orcid":"https://orcid.org/0000-0002-1353-2968"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenxuan Tu","raw_affiliation_strings":["National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032131582","display_name":"Sihang Zhou","orcid":"https://orcid.org/0000-0003-1491-4594"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Sihang Zhou","raw_affiliation_strings":["National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101727888","display_name":"Xinwang Liu","orcid":"https://orcid.org/0000-0001-9066-1475"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinwang Liu","raw_affiliation_strings":["National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100320103","display_name":"Yue Liu","orcid":"https://orcid.org/0000-0002-9894-0062"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yue Liu","raw_affiliation_strings":["National University of Defense Technology"],"affiliations":[{"raw_affiliation_string":"National University of Defense Technology","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006334685","display_name":"Zhiping Cai","orcid":"https://orcid.org/0000-0001-5726-833X"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhiping Cai","raw_affiliation_strings":["National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069681054","display_name":"En Zhu","orcid":"https://orcid.org/0000-0003-2305-7555"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"En Zhu","raw_affiliation_strings":["National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003963705","display_name":"Changwang Zhang","orcid":"https://orcid.org/0009-0004-4193-7833"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"funder","lineage":["https://openalex.org/I2250653659"]},{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Changwang Zhang","raw_affiliation_strings":["National University of Defense Technology, Changsha, China","Tencent Technology, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Tencent Technology, Shenzhen, China","institution_ids":["https://openalex.org/I2250653659"]},{"raw_affiliation_string":"National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5054232978","display_name":"Jieren Cheng","orcid":"https://orcid.org/0000-0002-0160-0126"},"institutions":[{"id":"https://openalex.org/I20942203","display_name":"Hainan University","ror":"https://ror.org/03q648j11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I20942203"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jieren Cheng","raw_affiliation_strings":["Hainan University, Haikou, China"],"affiliations":[{"raw_affiliation_string":"Hainan University, Haikou, China","institution_ids":["https://openalex.org/I20942203"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.17,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":15,"citation_normalized_percentile":{"value":0.999889,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"3494","last_page":"3500"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9816,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9714,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/initialization","display_name":"Initialization","score":0.77759653},{"id":"https://openalex.org/keywords/imputation","display_name":"Imputation (statistics)","score":0.6814767},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.6093898},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.55213857}],"concepts":[{"id":"https://openalex.org/C114466953","wikidata":"https://www.wikidata.org/wiki/Q6034165","display_name":"Initialization","level":2,"score":0.77759653},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72089547},{"id":"https://openalex.org/C58041806","wikidata":"https://www.wikidata.org/wiki/Q1660484","display_name":"Imputation (statistics)","level":3,"score":0.6814767},{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.63141143},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.6093898},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.55213857},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.49629837},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.46266225},{"id":"https://openalex.org/C184898388","wikidata":"https://www.wikidata.org/wiki/Q1435712","display_name":"Pairwise comparison","level":2,"score":0.42275968},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41431743},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36725655},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.22034702},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2022/485","pdf_url":"https://www.ijcai.org/proceedings/2022/0485.pdf","source":{"id":"https://openalex.org/S4363608755","display_name":"Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2022/485","pdf_url":"https://www.ijcai.org/proceedings/2022/0485.pdf","source":{"id":"https://openalex.org/S4363608755","display_name":"Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.71,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W1959608418","https://openalex.org/W2027447600","https://openalex.org/W2153959628","https://openalex.org/W2154851992","https://openalex.org/W2613148767","https://openalex.org/W2624407581","https://openalex.org/W2900470550","https://openalex.org/W2904362786","https://openalex.org/W2943501111","https://openalex.org/W2950880273","https://openalex.org/W2951369132","https://openalex.org/W2964015378","https://openalex.org/W3012816161","https://openalex.org/W3034693603","https://openalex.org/W3040731923","https://openalex.org/W3092835783","https://openalex.org/W3094678421","https://openalex.org/W3095746859","https://openalex.org/W3099845049","https://openalex.org/W3173294575","https://openalex.org/W4226219101","https://openalex.org/W4288364260","https://openalex.org/W4294558607","https://openalex.org/W4297733535","https://openalex.org/W4322614756"],"related_works":["https://openalex.org/W4211215373","https://openalex.org/W3179858851","https://openalex.org/W3144172081","https://openalex.org/W3028371478","https://openalex.org/W2903115227","https://openalex.org/W2181530120","https://openalex.org/W2081476516","https://openalex.org/W2055961818","https://openalex.org/W2024529227","https://openalex.org/W1574575415"],"abstract_inverted_index":{"Representation":[0],"learning":[1,35],"on":[2,160],"the":[3,12,28,34,80,97,105,112,123,133,141,151,155,165],"attribute-missing":[4,109],"graphs,":[5],"whose":[6],"connection":[7],"information":[8,14,41,82,93],"is":[9,18,20,144],"complete":[10],"while":[11],"attribute":[13,38,90],"of":[15,37,108,128,167],"some":[16],"nodes":[17],"missing,":[19],"an":[21],"important":[22],"yet":[23],"challenging":[24],"task.":[25],"To":[26,60],"impute":[27],"missing":[29],"attributes,":[30],"existing":[31],"methods":[32],"isolate":[33],"processes":[36],"and":[39,43,86,91,115,125],"structure":[40,81,92,106,143],"embeddings,":[42],"force":[44],"both":[45],"resultant":[46],"representations":[47],"to":[48,57,94,132],"align":[49],"with":[50],"a":[51,66],"common":[52],"in-discriminative":[53],"normal":[54],"distribution,":[55],"leading":[56],"inaccurate":[58],"imputation.":[59],"tackle":[61],"these":[62,118],"issues,":[63],"we":[64,77,102],"propose":[65],"novel":[67],"graph-oriented":[68],"imputation":[69],"framework":[70],"called":[71],"initializing":[72],"then":[73,87,116],"refining":[74,139],"(ITR),":[75],"where":[76],"first":[78,103],"employ":[79],"for":[83],"initial":[84,119],"imputation,":[85],"leverage":[88],"observed":[89],"adaptively":[95,145],"refine":[96,117],"imputed":[98],"latent":[99],"variables.":[100],"Specifically,":[101],"adopt":[104],"embeddings":[107,127],"samples":[110,130],"as":[111],"embedding":[113],"initialization,":[114],"values":[120],"by":[121,149],"aggregating":[122],"reliable":[124],"informative":[126],"attribute-observed":[129],"according":[131],"affinity":[134,142],"structure.":[135],"Specially,":[136],"in":[137],"our":[138],"process,":[140],"updated":[146],"through":[147],"iterations":[148],"calculating":[150],"sample-wise":[152],"correlations":[153],"upon":[154],"recomposed":[156],"embeddings.":[157],"Extensive":[158],"experiments":[159],"four":[161],"benchmark":[162],"datasets":[163],"verify":[164],"superiority":[166],"ITR":[168],"against":[169],"state-of-the-art":[170],"methods.":[171]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4285603647","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":2}],"updated_date":"2025-04-19T03:19:27.437644","created_date":"2022-07-16"}