{"id":"https://openalex.org/W4225147643","doi":"https://doi.org/10.24963/ijcai.2022/115","title":"Uncertainty-Aware Representation Learning for Action Segmentation","display_name":"Uncertainty-Aware Representation Learning for Action Segmentation","publication_year":2022,"publication_date":"2022-07-01","ids":{"openalex":"https://openalex.org/W4225147643","doi":"https://doi.org/10.24963/ijcai.2022/115"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2022/115","pdf_url":"https://www.ijcai.org/proceedings/2022/0115.pdf","source":{"id":"https://openalex.org/S4363608755","display_name":"Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://www.ijcai.org/proceedings/2022/0115.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101441931","display_name":"Lei Chen","orcid":"https://orcid.org/0000-0003-1912-1454"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lei Chen","raw_affiliation_strings":["Beijing National Research Center for Information Science and Technology (BNRist), and the Department of Automation, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Beijing National Research Center for Information Science and Technology (BNRist), and the Department of Automation, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031311605","display_name":"Muheng Li","orcid":"https://orcid.org/0000-0002-0619-5780"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Muheng Li","raw_affiliation_strings":["Beijing National Research Center for Information Science and Technology (BNRist), and the Department of Automation, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Beijing National Research Center for Information Science and Technology (BNRist), and the Department of Automation, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013973037","display_name":"Yueqi Duan","orcid":"https://orcid.org/0000-0002-1190-6663"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yueqi Duan","raw_affiliation_strings":["Department of Electronic Engineering, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Department of Electronic Engineering, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103087953","display_name":"Jie Zhou","orcid":"https://orcid.org/0000-0002-7153-2667"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jie Zhou","raw_affiliation_strings":["Beijing National Research Center for Information Science and Technology (BNRist), and the Department of Automation, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Beijing National Research Center for Information Science and Technology (BNRist), and the Department of Automation, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100460385","display_name":"Jiwen Lu","orcid":"https://orcid.org/0000-0002-6121-5529"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiwen Lu","raw_affiliation_strings":["Beijing National Research Center for Information Science and Technology (BNRist), and the Department of Automation, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Beijing National Research Center for Information Science and Technology (BNRist), and the Department of Automation, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.015,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":11,"citation_normalized_percentile":{"value":0.581738,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":"820","last_page":"826"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.6971415}],"concepts":[{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.88390243},{"id":"https://openalex.org/C2780522230","wikidata":"https://www.wikidata.org/wiki/Q1140419","display_name":"Ambiguity","level":2,"score":0.79857826},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7536018},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7334753},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.6971415},{"id":"https://openalex.org/C2780791683","wikidata":"https://www.wikidata.org/wiki/Q846785","display_name":"Action (physics)","level":2,"score":0.6756208},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.65645075},{"id":"https://openalex.org/C126042441","wikidata":"https://www.wikidata.org/wiki/Q1324888","display_name":"Frame (networking)","level":2,"score":0.6186911},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5164592},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2022/115","pdf_url":"https://www.ijcai.org/proceedings/2022/0115.pdf","source":{"id":"https://openalex.org/S4363608755","display_name":"Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2022/115","pdf_url":"https://www.ijcai.org/proceedings/2022/0115.pdf","source":{"id":"https://openalex.org/S4363608755","display_name":"Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.71,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1959608418","https://openalex.org/W2031688197","https://openalex.org/W2099614498","https://openalex.org/W2109698606","https://openalex.org/W2111051539","https://openalex.org/W2491875666","https://openalex.org/W2550143307","https://openalex.org/W2600383743","https://openalex.org/W2799262584","https://openalex.org/W2921678202","https://openalex.org/W2963524571","https://openalex.org/W2963795951","https://openalex.org/W3034373833","https://openalex.org/W3083550439","https://openalex.org/W3108772932","https://openalex.org/W3119038403","https://openalex.org/W3166363426","https://openalex.org/W3186015572","https://openalex.org/W3190537575","https://openalex.org/W3203594954","https://openalex.org/W3204193736","https://openalex.org/W3207346664","https://openalex.org/W4214736059","https://openalex.org/W4287114842","https://openalex.org/W4300126339","https://openalex.org/W4307765037","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4312814274","https://openalex.org/W4285370786","https://openalex.org/W3207760230","https://openalex.org/W2536018345","https://openalex.org/W2358353312","https://openalex.org/W2353836703","https://openalex.org/W2296488620","https://openalex.org/W17155033","https://openalex.org/W1590307681","https://openalex.org/W1496222301"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3,72,89],"propose":[4],"an":[5,96],"uncertainty-aware":[6],"representation":[7],"Learning":[8],"(UARL)":[9],"method":[10,123,144],"for":[11],"action":[12,16,24,83,112,127],"segmentation.":[13],"Most":[14],"existing":[15],"segmentation":[17],"methods":[18],"exploit":[19,77],"continuity":[20],"information":[21],"of":[22,35,45,51,93,103,110],"the":[23,32,36,49,56,74,78,101,108,111,115,118,146],"period":[25],"to":[26,76],"predict":[27],"frame-level":[28],"labels,":[29,64],"which":[30,65,106],"ignores":[31],"temporal":[33],"ambiguity":[34],"transition":[37],"region":[38],"between":[39,81],"two":[40,82],"actions.":[41],"Moreover,":[42],"similar":[43],"periods":[44,84],"different":[46,63,104],"actions,":[47,53,105],"e.g.,":[48],"beginning":[50],"some":[52],"will":[54],"confuse":[55],"network":[57],"if":[58],"they":[59],"are":[60],"annotated":[61],"with":[62,95,148],"causes":[66],"spatial":[67],"ambiguity.":[68],"To":[69],"address":[70],"this,":[71],"design":[73],"UARL":[75],"transitional":[79],"expression":[80],"by":[85],"uncertainty":[86,109],"learning.":[87],"Specially,":[88],"model":[90],"every":[91],"frame":[92],"actions":[94],"active":[97],"distribution":[98],"that":[99,142],"represents":[100],"probabilities":[102],"captures":[107],"and":[113,136],"exploits":[114],"tendency":[116],"during":[117],"action.":[119],"We":[120],"evaluate":[121],"our":[122,143],"on":[124],"three":[125],"popular":[126],"prediction":[128],"datasets:":[129],"Breakfast,":[130],"Georgia":[131],"Tech":[132],"Egocentric":[133],"Activities":[134],"(GTEA),":[135],"50Salads.":[137],"The":[138],"experimental":[139],"results":[140],"demonstrate":[141],"achieves":[145],"performance":[147],"state-of-the-art.":[149]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4225147643","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":5}],"updated_date":"2025-05-03T03:25:29.754306","created_date":"2022-05-01"}