{"id":"https://openalex.org/W3035519138","doi":"https://doi.org/10.24963/ijcai.2020/547","title":"Exploring Bilingual Parallel Corpora for Syntactically Controllable Paraphrase Generation","display_name":"Exploring Bilingual Parallel Corpora for Syntactically Controllable Paraphrase Generation","publication_year":2020,"publication_date":"2020-07-01","ids":{"openalex":"https://openalex.org/W3035519138","doi":"https://doi.org/10.24963/ijcai.2020/547","mag":"3035519138"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2020/547","pdf_url":"https://www.ijcai.org/proceedings/2020/0547.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://www.ijcai.org/proceedings/2020/0547.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015955888","display_name":"Mingtong Liu","orcid":"https://orcid.org/0000-0002-1884-3212"},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"funder","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Mingtong Liu","raw_affiliation_strings":["School of Computer Science and Information Technology && Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Information Technology && Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China","institution_ids":["https://openalex.org/I21193070"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018385470","display_name":"Erguang Yang","orcid":null},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"funder","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Erguang Yang","raw_affiliation_strings":["School of Computer Science and Information Technology && Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Information Technology && Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China","institution_ids":["https://openalex.org/I21193070"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055232825","display_name":"Deyi Xiong","orcid":"https://orcid.org/0000-0002-2353-5038"},"institutions":[{"id":"https://openalex.org/I162868743","display_name":"Tianjin University","ror":"https://ror.org/012tb2g32","country_code":"CN","type":"funder","lineage":["https://openalex.org/I162868743"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Deyi Xiong","raw_affiliation_strings":["College of Intelligence and Computing, Tianjin University, Tianjin, China"],"affiliations":[{"raw_affiliation_string":"College of Intelligence and Computing, Tianjin University, Tianjin, China","institution_ids":["https://openalex.org/I162868743"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100412293","display_name":"Yujie Zhang","orcid":"https://orcid.org/0000-0003-1245-0052"},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"funder","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yujie Zhang","raw_affiliation_strings":["School of Computer Science and Information Technology && Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Information Technology && Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China","institution_ids":["https://openalex.org/I21193070"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002074153","display_name":"Sheng Chen","orcid":"https://orcid.org/0000-0003-1428-6778"},"institutions":[{"id":"https://openalex.org/I4210156165","display_name":"Lenovo (China)","ror":"https://ror.org/04srd9d93","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210156165"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chen Sheng","raw_affiliation_strings":["Lenovo Research AI Lab, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Lenovo Research AI Lab, Beijing, China","institution_ids":["https://openalex.org/I4210156165"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5112540993","display_name":"Changjian Hu","orcid":null},"institutions":[{"id":"https://openalex.org/I4210156165","display_name":"Lenovo (China)","ror":"https://ror.org/04srd9d93","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210156165"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Changjian Hu","raw_affiliation_strings":["Lenovo Research AI Lab, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Lenovo Research AI Lab, Beijing, China","institution_ids":["https://openalex.org/I4210156165"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101698034","display_name":"Jinan Xu","orcid":"https://orcid.org/0000-0003-0170-626X"},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"funder","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jinan Xu","raw_affiliation_strings":["School of Computer Science and Information Technology && Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Information Technology && Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China","institution_ids":["https://openalex.org/I21193070"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100394297","display_name":"Yufeng Chen","orcid":"https://orcid.org/0000-0003-0437-6788"},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"funder","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yufeng Chen","raw_affiliation_strings":["School of Computer Science and Information Technology && Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Information Technology && Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China","institution_ids":["https://openalex.org/I21193070"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.678,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":10,"citation_normalized_percentile":{"value":0.859501,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":null,"issue":null,"first_page":"3955","last_page":"3961"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/paraphrase","display_name":"Paraphrase","score":0.9691057},{"id":"https://openalex.org/keywords/parallel-corpora","display_name":"Parallel corpora","score":0.5977235},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.5861622},{"id":"https://openalex.org/keywords/discriminator","display_name":"Discriminator","score":0.55057836},{"id":"https://openalex.org/keywords/treebank","display_name":"Treebank","score":0.51424783},{"id":"https://openalex.org/keywords/perplexity","display_name":"Perplexity","score":0.47731385}],"concepts":[{"id":"https://openalex.org/C2780922921","wikidata":"https://www.wikidata.org/wiki/Q255189","display_name":"Paraphrase","level":2,"score":0.9691057},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.86801124},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.7710886},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7061198},{"id":"https://openalex.org/C2985367798","wikidata":"https://www.wikidata.org/wiki/Q1346592","display_name":"Parallel corpora","level":3,"score":0.5977235},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.5861622},{"id":"https://openalex.org/C2779803651","wikidata":"https://www.wikidata.org/wiki/Q5282088","display_name":"Discriminator","level":3,"score":0.55057836},{"id":"https://openalex.org/C206134035","wikidata":"https://www.wikidata.org/wiki/Q811525","display_name":"Treebank","level":3,"score":0.51424783},{"id":"https://openalex.org/C100279451","wikidata":"https://www.wikidata.org/wiki/Q372193","display_name":"Perplexity","level":3,"score":0.47731385},{"id":"https://openalex.org/C203005215","wikidata":"https://www.wikidata.org/wiki/Q79798","display_name":"Machine translation","level":2,"score":0.38443542},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.37071586},{"id":"https://openalex.org/C186644900","wikidata":"https://www.wikidata.org/wiki/Q194152","display_name":"Parsing","level":2,"score":0.15539727},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2020/547","pdf_url":"https://www.ijcai.org/proceedings/2020/0547.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2020/547","pdf_url":"https://www.ijcai.org/proceedings/2020/0547.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.69,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1861492603","https://openalex.org/W2064675550","https://openalex.org/W2108501770","https://openalex.org/W2133564696","https://openalex.org/W2531908596","https://openalex.org/W2741602058","https://openalex.org/W2755124548","https://openalex.org/W2786553814","https://openalex.org/W2889009749","https://openalex.org/W2892100238","https://openalex.org/W2896457183","https://openalex.org/W2911987598","https://openalex.org/W2914442349","https://openalex.org/W2947683321","https://openalex.org/W2951687181","https://openalex.org/W2952443824","https://openalex.org/W2962788902","https://openalex.org/W2963126845","https://openalex.org/W2963223306","https://openalex.org/W2963341956","https://openalex.org/W2963403868","https://openalex.org/W2963463583","https://openalex.org/W2963658612","https://openalex.org/W2964053384","https://openalex.org/W2964212550","https://openalex.org/W2964308564","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4301800915","https://openalex.org/W4299838440","https://openalex.org/W3147887346","https://openalex.org/W2964047924","https://openalex.org/W2963839582","https://openalex.org/W2962832505","https://openalex.org/W2743945814","https://openalex.org/W2739034105","https://openalex.org/W2267125612","https://openalex.org/W2143927888"],"abstract_inverted_index":{"Paraphrase":[0],"generation":[1,191],"is":[2,35,166],"of":[3,66,79,85,126,168],"great":[4],"importance":[5],"to":[6,53,60,71,109,121,132,147],"many":[7,40],"downstream":[8],"tasks":[9],"in":[10,21,130],"natural":[11],"language":[12],"processing.":[13],"Recent":[14],"efforts":[15],"have":[16],"focused":[17],"on":[18,29,162,180,194],"generating":[19,169],"paraphrases":[20,62,171],"specific":[22],"syntactic":[23,67,124,174],"forms,":[24],"which,":[25],"generally,":[26],"heavily":[27],"relies":[28],"manually":[30],"annotated":[31],"paraphrase":[32,183,190,197],"data":[33,165],"that":[34,156],"not":[36],"easily":[37],"available":[38],"for":[39,137],"languages":[41,78],"and":[42,91,97,113,116,143,153],"domains.":[43],"In":[44,69],"this":[45],"paper,":[46],"we":[47,82,140],"propose":[48,105],"a":[49,118,127,181,195],"novel":[50],"end-to-end":[51],"framework":[52],"leverage":[54],"existing":[55],"large-scale":[56],"bilingual":[57,163],"parallel":[58,80,164],"corpora":[59],"generate":[61],"under":[63],"the":[64,76,88,111,123,134,150,157,177],"control":[65],"exemplars.":[68],"order":[70,131],"train":[72,149],"one":[73],"model":[74,122,159,179],"over":[75],"two":[77,135],"corpora,":[81],"embed":[83],"sentences":[84],"them":[86],"into":[87],"same":[89],"content":[90,96,112],"style":[92,98,114,125],"spaces":[93],"with":[94,172],"shared":[95],"encoders":[99],"using":[100],"cross-lingual":[101],"word":[102],"embeddings.":[103],"We":[104],"an":[106],"adversarial":[107],"discriminator":[108],"disentangle":[110],"space,":[115],"employ":[117],"latent":[119],"variable":[120],"given":[128],"exemplar":[129],"guide":[133],"decoders":[136],"generation.":[138],"Additionally,":[139],"introduce":[141],"cycle":[142],"masking":[144],"learning":[145],"schemes":[146],"efficiently":[148],"model.":[151],"Experiments":[152],"analyses":[154],"demonstrate":[155],"proposed":[158],"trained":[160,178,193],"only":[161],"capable":[167],"diverse":[170],"desirable":[173],"styles.":[175],"Fine-tuning":[176],"small":[182],"corpus":[184],"makes":[185],"it":[186],"substantially":[187],"outperform":[188],"state-of-the-art":[189],"models":[192],"larger":[196],"dataset.":[198]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3035519138","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":1}],"updated_date":"2025-04-16T10:04:40.728891","created_date":"2020-06-19"}