{"id":"https://openalex.org/W3035154854","doi":"https://doi.org/10.24963/ijcai.2020/324","title":"Stochastic Batch Augmentation with An Effective Distilled Dynamic Soft Label Regularizer","display_name":"Stochastic Batch Augmentation with An Effective Distilled Dynamic Soft Label Regularizer","publication_year":2020,"publication_date":"2020-07-01","ids":{"openalex":"https://openalex.org/W3035154854","doi":"https://doi.org/10.24963/ijcai.2020/324","mag":"3035154854"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2020/324","pdf_url":"https://www.ijcai.org/proceedings/2020/0324.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://www.ijcai.org/proceedings/2020/0324.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100340627","display_name":"Qian Li","orcid":"https://orcid.org/0000-0002-8308-9551"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"education","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qian Li","raw_affiliation_strings":["Xi\u2019an Jiaotong University"],"affiliations":[{"raw_affiliation_string":"Xi\u2019an Jiaotong University","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044089406","display_name":"Qingyuan Hu","orcid":"https://orcid.org/0000-0002-4198-761X"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"education","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qingyuan Hu","raw_affiliation_strings":["Xi\u2019an Jiaotong University"],"affiliations":[{"raw_affiliation_string":"Xi\u2019an Jiaotong University","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023228402","display_name":"Yong Qi","orcid":"https://orcid.org/0000-0002-7682-5653"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"education","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yong Qi","raw_affiliation_strings":["Xi\u2019an Jiaotong University"],"affiliations":[{"raw_affiliation_string":"Xi\u2019an Jiaotong University","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021497508","display_name":"Saiyu Qi","orcid":"https://orcid.org/0000-0002-0394-4432"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"education","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Saiyu Qi","raw_affiliation_strings":["Xi\u2019an Jiaotong University"],"affiliations":[{"raw_affiliation_string":"Xi\u2019an Jiaotong University","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101807673","display_name":"Jie Ma","orcid":"https://orcid.org/0000-0003-1996-5163"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"education","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jie Ma","raw_affiliation_strings":["Xi\u2019an Jiaotong University"],"affiliations":[{"raw_affiliation_string":"Xi\u2019an Jiaotong University","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100409923","display_name":"Jian Zhang","orcid":"https://orcid.org/0000-0002-0912-1197"},"institutions":[{"id":"https://openalex.org/I17145004","display_name":"Northwestern Polytechnical University","ror":"https://ror.org/01y0j0j86","country_code":"CN","type":"education","lineage":["https://openalex.org/I17145004"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jian Zhang","raw_affiliation_strings":["Northwestern Polytechnical University"],"affiliations":[{"raw_affiliation_string":"Northwestern Polytechnical University","institution_ids":["https://openalex.org/I17145004"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.43,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.796796,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"2340","last_page":"2346"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.7122054}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7255801},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.7122054},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.70566654},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.62393177},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50151587},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.4272511},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.40887293},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35510916},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.33667538},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21378243},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2020/324","pdf_url":"https://www.ijcai.org/proceedings/2020/0324.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2006.15284","pdf_url":"http://arxiv.org/pdf/2006.15284","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2020/324","pdf_url":"https://www.ijcai.org/proceedings/2020/0324.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W43109613","https://openalex.org/W4200527723","https://openalex.org/W3162204513","https://openalex.org/W3083152911","https://openalex.org/W3022347918","https://openalex.org/W2371138613","https://openalex.org/W2359952343","https://openalex.org/W2239445980","https://openalex.org/W2080152487","https://openalex.org/W2048963458"],"abstract_inverted_index":{"Data":[0],"augmentation":[1],"have":[2],"been":[3],"intensively":[4],"used":[5],"in":[6,16,41,57,79,121,135],"training":[7],"deep":[8,88],"neural":[9,178],"network":[10,64,186],"to":[11,103,111,140],"improve":[12,173],"the":[13,28,31,35,45,49,54,60,63,80,84,87,117,133,136,150,153,174,177,183],"generalization,":[14,77],"whether":[15,110],"original":[17,36,55,158],"space":[18],"(e.g.,":[19],"image":[20],"space)":[21],"or":[22],"representation":[23],"space.":[24],"Although":[25],"being":[26],"successful,":[27],"connection":[29],"between":[30,152],"synthesized":[32,50],"data":[33,37],"and":[34,120,159,167,180],"is":[38,65,73,129],"largely":[39],"ignored":[40],"training,":[42],"without":[43],"considering":[44],"distribution":[46,138],"information":[47],"that":[48,71,170],"samples":[51],"are":[52],"surrounding":[53],"sample":[56],"training.":[58,187],"Hence,":[59],"behavior":[61,72],"of":[62,86,157,176,185],"not":[66],"optimized":[67],"for":[68,76,83],"this.":[69],"However,":[70],"crucially":[74],"important":[75],"even":[78],"adversarial":[81],"setting,":[82],"safety":[85],"learning":[89],"system.":[90],"In":[91],"this":[92],"work,":[93],"we":[94],"propose":[95],"a":[96,123],"framework":[97],"called":[98],"Stochastic":[99],"Batch":[100],"Augmentation":[101],"(SBA)":[102],"address":[104],"these":[105],"problems.":[106],"SBA":[107,171],"stochastically":[108],"decides":[109],"augment":[112],"at":[113],"iterations":[114],"controlled":[115],"by":[116,131,149],"batch":[118],"scheduler":[119],"which":[122],"''distilled''":[124],"dynamic":[125],"soft":[126],"label":[127],"regularization":[128,145],"introduced":[130],"incorporating":[132],"similarity":[134],"vicinity":[137],"respect":[139],"raw":[141],"samples.":[142],"The":[143],"proposed":[144],"provides":[146],"direct":[147],"supervision":[148],"KL-Divergence":[151],"output":[154],"soft-max":[155],"distributions":[156],"virtual":[160],"data.":[161],"Our":[162],"experiments":[163],"on":[164],"CIFAR-10,":[165],"CIFAR-100,":[166],"ImageNet":[168],"show":[169],"can":[172],"generalization":[175],"networks":[179],"speed":[181],"up":[182],"convergence":[184]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3035154854","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":1}],"updated_date":"2024-12-12T20:22:32.008384","created_date":"2020-06-19"}