{"id":"https://openalex.org/W3105939285","doi":"https://doi.org/10.24963/ijcai.2020/148","title":"Video Question Answering on Screencast Tutorials","display_name":"Video Question Answering on Screencast Tutorials","publication_year":2020,"publication_date":"2020-07-01","ids":{"openalex":"https://openalex.org/W3105939285","doi":"https://doi.org/10.24963/ijcai.2020/148","mag":"3105939285"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2020/148","pdf_url":"https://www.ijcai.org/proceedings/2020/0148.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://www.ijcai.org/proceedings/2020/0148.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5029157617","display_name":"Wentian Zhao","orcid":"https://orcid.org/0009-0006-7645-8263"},"institutions":[{"id":"https://openalex.org/I1306409833","display_name":"Adobe Systems (United States)","ror":"https://ror.org/059tvcg64","country_code":"US","type":"funder","lineage":["https://openalex.org/I1306409833"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wentian Zhao","raw_affiliation_strings":["Adobe Research"],"affiliations":[{"raw_affiliation_string":"Adobe Research","institution_ids":["https://openalex.org/I1306409833"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082880112","display_name":"Seokhwan Kim","orcid":"https://orcid.org/0000-0002-7443-1212"},"institutions":[{"id":"https://openalex.org/I1311688040","display_name":"Amazon (United States)","ror":"https://ror.org/04mv4n011","country_code":"US","type":"funder","lineage":["https://openalex.org/I1311688040"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Seokhwan Kim","raw_affiliation_strings":["Amazon Alexa AI"],"affiliations":[{"raw_affiliation_string":"Amazon Alexa AI","institution_ids":["https://openalex.org/I1311688040"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054900679","display_name":"Ning Xu","orcid":"https://orcid.org/0000-0002-7526-4356"},"institutions":[{"id":"https://openalex.org/I1306409833","display_name":"Adobe Systems (United States)","ror":"https://ror.org/059tvcg64","country_code":"US","type":"funder","lineage":["https://openalex.org/I1306409833"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ning Xu","raw_affiliation_strings":["Adobe Research"],"affiliations":[{"raw_affiliation_string":"Adobe Research","institution_ids":["https://openalex.org/I1306409833"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5109787260","display_name":"Hailin Jin","orcid":null},"institutions":[{"id":"https://openalex.org/I1306409833","display_name":"Adobe Systems (United States)","ror":"https://ror.org/059tvcg64","country_code":"US","type":"funder","lineage":["https://openalex.org/I1306409833"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hailin Jin","raw_affiliation_strings":["Adobe Research"],"affiliations":[{"raw_affiliation_string":"Adobe Research","institution_ids":["https://openalex.org/I1306409833"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":5,"citation_normalized_percentile":{"value":0.805237,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":80},"biblio":{"volume":null,"issue":null,"first_page":"1061","last_page":"1068"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9859,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.56600726},{"id":"https://openalex.org/keywords/open-domain","display_name":"Open domain","score":0.45931935}],"concepts":[{"id":"https://openalex.org/C44291984","wikidata":"https://www.wikidata.org/wiki/Q1074173","display_name":"Question answering","level":2,"score":0.89962375},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8381138},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.6050445},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.588716},{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.56600726},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.5583256},{"id":"https://openalex.org/C2993776861","wikidata":"https://www.wikidata.org/wiki/Q1074173","display_name":"Open domain","level":3,"score":0.45931935},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.45559573},{"id":"https://openalex.org/C4554734","wikidata":"https://www.wikidata.org/wiki/Q593744","display_name":"Knowledge base","level":2,"score":0.44274074},{"id":"https://openalex.org/C207685749","wikidata":"https://www.wikidata.org/wiki/Q2088941","display_name":"Domain knowledge","level":2,"score":0.4103921},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40121734},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.36265856},{"id":"https://openalex.org/C49774154","wikidata":"https://www.wikidata.org/wiki/Q131765","display_name":"Multimedia","level":1,"score":0.32336864},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2020/148","pdf_url":"https://www.ijcai.org/proceedings/2020/0148.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2008.00544","pdf_url":"http://arxiv.org/pdf/2008.00544","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2008.00544","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2020/148","pdf_url":"https://www.ijcai.org/proceedings/2020/0148.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.65,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":["https://openalex.org/W3034380396","https://openalex.org/W3105939285"],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1524333225","https://openalex.org/W1832693441","https://openalex.org/W2087095333","https://openalex.org/W2120735855","https://openalex.org/W2154851992","https://openalex.org/W2251818205","https://openalex.org/W2592749667","https://openalex.org/W2606982687","https://openalex.org/W2737435850","https://openalex.org/W2741903908","https://openalex.org/W2751525844","https://openalex.org/W2798708692","https://openalex.org/W2907820376","https://openalex.org/W2952132648","https://openalex.org/W2962910007","https://openalex.org/W2963037989","https://openalex.org/W2963748441","https://openalex.org/W2963890755","https://openalex.org/W2970355596","https://openalex.org/W2981985547","https://openalex.org/W3023700693","https://openalex.org/W4294170691"],"related_works":["https://openalex.org/W4309395021","https://openalex.org/W4307481286","https://openalex.org/W3215363805","https://openalex.org/W3134247745","https://openalex.org/W3091989500","https://openalex.org/W2991310128","https://openalex.org/W2951097643","https://openalex.org/W2395174199","https://openalex.org/W2391533720","https://openalex.org/W204133468"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"a":[3,14,27],"new":[4],"video":[5,31,65,81],"question":[6,32,66,97],"answering":[7,33,98],"task":[8],"on":[9,77],"screencast":[10],"tutorials.":[11],"We":[12,68],"introduce":[13],"dataset":[15,40],"including":[16],"question,":[17],"answer":[18],"and":[19,104],"context":[20],"triples":[21],"from":[22,83],"the":[23,36,44,56,62,84,96],"tutorial":[24],"videos":[25],"for":[26],"software.":[28],"Unlike":[29],"other":[30],"works,":[34],"all":[35],"answers":[37],"in":[38],"our":[39,91],"are":[41],"grounded":[42],"to":[43,54],"domain":[45,105],"knowledge":[46],"base.":[47],"An":[48],"one-shot":[49],"recognition":[50],"algorithm":[51],"is":[52],"designed":[53],"extract":[55],"visual":[57],"cues,":[58],"which":[59],"helps":[60],"enhance":[61],"performance":[63],"of":[64,80],"answering.":[67],"also":[69],"propose":[70],"several":[71],"baseline":[72],"neural":[73],"network":[74],"architectures":[75],"based":[76],"various":[78],"aspects":[79],"contexts":[82,103],"dataset.":[85],"The":[86],"experimental":[87],"results":[88],"demonstrate":[89],"that":[90],"proposed":[92],"models":[93],"significantly":[94],"improve":[95],"performances":[99],"by":[100],"incorporating":[101],"multi-modal":[102],"knowledge.":[106]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3105939285","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":2}],"updated_date":"2025-04-23T03:28:30.065752","created_date":"2020-11-23"}