{"id":"https://openalex.org/W2741304800","doi":"https://doi.org/10.24963/ijcai.2017/642","title":"Variational Mixtures of Gaussian Processes for Classification","display_name":"Variational Mixtures of Gaussian Processes for Classification","publication_year":2017,"publication_date":"2017-07-28","ids":{"openalex":"https://openalex.org/W2741304800","doi":"https://doi.org/10.24963/ijcai.2017/642","mag":"2741304800"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2017/642","pdf_url":"https://www.ijcai.org/proceedings/2017/0642.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://www.ijcai.org/proceedings/2017/0642.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101798370","display_name":"Chen Luo","orcid":"https://orcid.org/0000-0002-9736-0533"},"institutions":[{"id":"https://openalex.org/I66867065","display_name":"East China Normal University","ror":"https://ror.org/02n96ep67","country_code":"CN","type":"education","lineage":["https://openalex.org/I66867065"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chen Luo","raw_affiliation_strings":["Department of Computer Science and Technology, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China","institution_ids":["https://openalex.org/I66867065"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5047846625","display_name":"Shiliang Sun","orcid":"https://orcid.org/0000-0001-7069-3752"},"institutions":[{"id":"https://openalex.org/I66867065","display_name":"East China Normal University","ror":"https://ror.org/02n96ep67","country_code":"CN","type":"education","lineage":["https://openalex.org/I66867065"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Shiliang Sun","raw_affiliation_strings":["Department of Computer Science and Technology, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China","institution_ids":["https://openalex.org/I66867065"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5047846625"],"corresponding_institution_ids":["https://openalex.org/I66867065"],"apc_list":null,"apc_paid":null,"fwci":0.38,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":9,"citation_normalized_percentile":{"value":0.695175,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"4603","last_page":"4609"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9852,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9849,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.658369}],"concepts":[{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.658369},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.59835094},{"id":"https://openalex.org/C151956035","wikidata":"https://www.wikidata.org/wiki/Q1132755","display_name":"Logistic regression","level":2,"score":0.57810605},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.54973835},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5367032},{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.5311987},{"id":"https://openalex.org/C60229501","wikidata":"https://www.wikidata.org/wiki/Q18822","display_name":"Global Positioning System","level":2,"score":0.509864},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48274654},{"id":"https://openalex.org/C57830394","wikidata":"https://www.wikidata.org/wiki/Q278079","display_name":"Posterior probability","level":3,"score":0.45766547},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.44481888},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43325257},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.385646},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.35387203},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3393712},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.07280618},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2017/642","pdf_url":"https://www.ijcai.org/proceedings/2017/0642.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2017/642","pdf_url":"https://www.ijcai.org/proceedings/2017/0642.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1533660737","https://openalex.org/W1916396454","https://openalex.org/W2009086942","https://openalex.org/W2027248184","https://openalex.org/W2069429561","https://openalex.org/W2095849032","https://openalex.org/W2117496083","https://openalex.org/W2123687908","https://openalex.org/W2127498532","https://openalex.org/W2151967501","https://openalex.org/W2160299137","https://openalex.org/W3101380508","https://openalex.org/W3120740533","https://openalex.org/W4211049957"],"related_works":["https://openalex.org/W4380558509","https://openalex.org/W4294619368","https://openalex.org/W4286748465","https://openalex.org/W3196933554","https://openalex.org/W3118984993","https://openalex.org/W2912851808","https://openalex.org/W2144336328","https://openalex.org/W2141609920","https://openalex.org/W2116723448","https://openalex.org/W1992295166"],"abstract_inverted_index":{"Gaussian":[0,50,58],"Processes":[1,51],"(GPs)":[2],"are":[3,36,93,105,151],"powerful":[4],"tools":[5],"for":[6,30,38,52,60,77,127],"machine":[7],"learning":[8],"which":[9,74,111],"have":[10],"been":[11],"applied":[12],"to":[13,26,69],"both":[14],"classification":[15,78,128],"and":[16,100],"regression.":[17],"The":[18,80,91,122],"mixture":[19],"models":[20,35],"of":[21,49,56,83,139],"GPs":[22,29],"were":[23],"later":[24],"proposed":[25],"further":[27],"improve":[28],"data":[31],"modeling.":[32],"However,":[33],"these":[34],"formulated":[37],"regression":[39,135],"problems.":[40,79],"In":[41],"this":[42],"work,":[43],"we":[44],"propose":[45],"a":[46,101],"new":[47],"Mixture":[48],"Classification":[53],"(MGPC).":[54],"Instead":[55],"the":[57,64,71,96,134,143],"likelihood":[59,68],"regression,":[61],"MGPC":[62,129],"employs":[63],"logistic":[65],"function":[66],"as":[67],"obtain":[70],"class":[72],"probabilities,":[73],"is":[75,86,130],"suitable":[76],"posterior":[81],"distribution":[82],"latent":[84],"variables":[85],"approximated":[87],"through":[88,95],"variational":[89,97],"inference.":[90],"hyperparameters":[92],"optimized":[94],"EM":[98],"method":[99],"greedy":[102],"algorithm.":[103],"Experiments":[104],"performed":[106],"on":[107,119],"multiple":[108],"real-world":[109],"datasets":[110],"show":[112],"improvements":[113],"over":[114],"five":[115],"widely":[116],"used":[117],"methods":[118],"predictive":[120],"performance.":[121],"results":[123],"also":[124],"indicate":[125],"that":[126,146],"significantly":[131],"better":[132],"than":[133],"model":[136,149],"with":[137],"mixtures":[138],"GPs,":[140],"different":[141],"from":[142],"existing":[144],"consensus":[145],"their":[147],"single":[148],"counterparts":[150],"comparable.":[152]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2741304800","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":2}],"updated_date":"2025-01-02T13:17:15.853994","created_date":"2017-08-08"}