{"id":"https://openalex.org/W2740660291","doi":"https://doi.org/10.24963/ijcai.2017/471","title":"Deep-dense Conditional Random Fields for Object Co-segmentation","display_name":"Deep-dense Conditional Random Fields for Object Co-segmentation","publication_year":2017,"publication_date":"2017-07-28","ids":{"openalex":"https://openalex.org/W2740660291","doi":"https://doi.org/10.24963/ijcai.2017/471","mag":"2740660291"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2017/471","pdf_url":"https://www.ijcai.org/proceedings/2017/0471.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://www.ijcai.org/proceedings/2017/0471.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5039592275","display_name":"Zehuan Yuan","orcid":"https://orcid.org/0000-0002-0349-9367"},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"education","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zehuan Yuan","raw_affiliation_strings":["State Key Laboratory for Novel Software Technology, Nanjing University, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory for Novel Software Technology, Nanjing University, China","institution_ids":["https://openalex.org/I881766915"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061696740","display_name":"Tong L\u00fc","orcid":"https://orcid.org/0000-0002-7051-5347"},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"education","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tong Lu","raw_affiliation_strings":["State Key Laboratory for Novel Software Technology, Nanjing University, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory for Novel Software Technology, Nanjing University, China","institution_ids":["https://openalex.org/I881766915"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5053703016","display_name":"Yirui Wu","orcid":"https://orcid.org/0000-0003-3022-3718"},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"education","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yirui Wu","raw_affiliation_strings":["College of Computer and Information, Hohai University, China"],"affiliations":[{"raw_affiliation_string":"College of Computer and Information, Hohai University, China","institution_ids":["https://openalex.org/I163340411"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.992,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":56,"citation_normalized_percentile":{"value":0.883565,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":"3371","last_page":"3377"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.6638784}],"concepts":[{"id":"https://openalex.org/C152565575","wikidata":"https://www.wikidata.org/wiki/Q1124538","display_name":"Conditional random field","level":2,"score":0.9186971},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.80691874},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.742649},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71356726},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6850586},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.6638784},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6290425},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.6238369},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.61864364},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.5577253},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5121167},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.4951152},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.45320016},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2017/471","pdf_url":"https://www.ijcai.org/proceedings/2017/0471.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.24963/ijcai.2017/471","pdf_url":"https://www.ijcai.org/proceedings/2017/0471.pdf","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W1914179642","https://openalex.org/W1963920598","https://openalex.org/W1964884769","https://openalex.org/W1968731684","https://openalex.org/W1984034752","https://openalex.org/W1996140089","https://openalex.org/W2008428344","https://openalex.org/W2031489346","https://openalex.org/W2072128103","https://openalex.org/W2096674800","https://openalex.org/W2110370288","https://openalex.org/W2118557299","https://openalex.org/W2129305389","https://openalex.org/W2160812203","https://openalex.org/W2160847065","https://openalex.org/W2161236525","https://openalex.org/W2295160225","https://openalex.org/W2341257189","https://openalex.org/W2415053570","https://openalex.org/W2429116482","https://openalex.org/W2468480815","https://openalex.org/W2518874898","https://openalex.org/W2952793010","https://openalex.org/W4231109964","https://openalex.org/W4554164","https://openalex.org/W639708223","https://openalex.org/W809122546"],"related_works":["https://openalex.org/W50079190","https://openalex.org/W3102147106","https://openalex.org/W2616891703","https://openalex.org/W2356597680","https://openalex.org/W2347460059","https://openalex.org/W2114846443","https://openalex.org/W2111726165","https://openalex.org/W2093471820","https://openalex.org/W2055466819","https://openalex.org/W1984858032"],"abstract_inverted_index":{"We":[0,25,75,101],"address":[1],"the":[2],"problem":[3],"of":[4,53,64],"object":[5,43,71],"co-segmentation":[6,10],"in":[7,16,22,47,96],"images.":[8,49,74],"Object":[9],"aims":[11],"to":[12,41,83],"segment":[13],"common":[14],"objects":[15],"images":[17],"and":[18,44,67,90,108],"has":[19],"promising":[20],"applications":[21],"AI":[23],"agents.":[24],"solve":[26],"it":[27],"by":[28,58],"proposing":[29],"a":[30,77,97],"co-occurrence":[31,51,85],"map,":[32],"which":[33],"measures":[34],"how":[35],"likely":[36],"an":[37,42,54],"image":[38,55,65],"region":[39],"belongs":[40],"also":[45],"appears":[46],"other":[48],"The":[50],"map":[52],"is":[56],"calculated":[57],"combining":[59],"two":[60,106],"parts:":[61],"objectness":[62,91],"scores":[63],"regions":[66],"similarity":[68,88],"evidences":[69],"from":[70],"proposals":[72],"across":[73],"introduce":[76],"deep-dense":[78],"conditional":[79],"random":[80],"field":[81],"framework":[82],"infer":[84],"maps.":[86],"Both":[87],"metric":[89],"measure":[92],"are":[93],"learned":[94],"end-to-end":[95],"single":[98],"deep":[99],"network.":[100],"evaluate":[102],"our":[103],"method":[104],"on":[105],"benchmarks":[107],"achieve":[109],"competitive":[110],"performance.":[111]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2740660291","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":7},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":8},{"year":2020,"cited_by_count":15},{"year":2019,"cited_by_count":14},{"year":2018,"cited_by_count":4}],"updated_date":"2024-12-13T20:47:41.224689","created_date":"2017-08-08"}