{"id":"https://openalex.org/W2803875452","doi":"https://doi.org/10.23919/wiopt.2018.8362852","title":"Waze-inspired spectrum discovery via smartphone sensing data fusion","display_name":"Waze-inspired spectrum discovery via smartphone sensing data fusion","publication_year":2018,"publication_date":"2018-05-01","ids":{"openalex":"https://openalex.org/W2803875452","doi":"https://doi.org/10.23919/wiopt.2018.8362852","mag":"2803875452"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/wiopt.2018.8362852","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006448949","display_name":"Sen Lin","orcid":"https://orcid.org/0000-0002-3797-3215"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"education","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sen Lin","raw_affiliation_strings":["School of EECE, Arizona State University, Tempe, AZ"],"affiliations":[{"raw_affiliation_string":"School of EECE, Arizona State University, Tempe, AZ","institution_ids":["https://openalex.org/I55732556"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027033026","display_name":"Junshan Zhang","orcid":"https://orcid.org/0000-0002-3840-1753"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"education","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Junshan Zhang","raw_affiliation_strings":["School of EECE, Arizona State University, Tempe, AZ"],"affiliations":[{"raw_affiliation_string":"School of EECE, Arizona State University, Tempe, AZ","institution_ids":["https://openalex.org/I55732556"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100358933","display_name":"Lei Ying","orcid":"https://orcid.org/0000-0001-7955-9445"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"education","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Lei Ying","raw_affiliation_strings":["School of EECE, Arizona State University, Tempe, AZ"],"affiliations":[{"raw_affiliation_string":"School of EECE, Arizona State University, Tempe, AZ","institution_ids":["https://openalex.org/I55732556"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.37,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.389688,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":74},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12879","display_name":"Distributed Sensor Networks and Detection Algorithms","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12879","display_name":"Distributed Sensor Networks and Detection Algorithms","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10326","display_name":"Indoor and Outdoor Localization Technologies","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/intuition","display_name":"Intuition","score":0.7238811},{"id":"https://openalex.org/keywords/sensor-fusion","display_name":"Sensor Fusion","score":0.68674314},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.48329046}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7272281},{"id":"https://openalex.org/C132010649","wikidata":"https://www.wikidata.org/wiki/Q189222","display_name":"Intuition","level":2,"score":0.7238811},{"id":"https://openalex.org/C33954974","wikidata":"https://www.wikidata.org/wiki/Q486494","display_name":"Sensor fusion","level":2,"score":0.68674314},{"id":"https://openalex.org/C158525013","wikidata":"https://www.wikidata.org/wiki/Q2593739","display_name":"Fusion","level":2,"score":0.49665385},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.48329046},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.44520092},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.4431177},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38585344},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37120986},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.13731822},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/wiopt.2018.8362852","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1595409123","https://openalex.org/W2002240881","https://openalex.org/W2045201726","https://openalex.org/W2084436032","https://openalex.org/W2085937320","https://openalex.org/W2100755716","https://openalex.org/W2107872407","https://openalex.org/W2115076853","https://openalex.org/W2129470660","https://openalex.org/W2131018050","https://openalex.org/W2144112805","https://openalex.org/W2145096794","https://openalex.org/W2153209449","https://openalex.org/W2154574806","https://openalex.org/W2158604761","https://openalex.org/W2899702797","https://openalex.org/W3101961963","https://openalex.org/W3105988367","https://openalex.org/W4232980324"],"related_works":["https://openalex.org/W3214791684","https://openalex.org/W2726747157","https://openalex.org/W2364252372","https://openalex.org/W2353265673","https://openalex.org/W2152662039","https://openalex.org/W2145797872","https://openalex.org/W2132659060","https://openalex.org/W2031992971","https://openalex.org/W2010131506","https://openalex.org/W2004817612"],"abstract_inverted_index":{"We":[0],"study":[1],"Waze-inspired":[2],"spectrum":[3,10,19,65],"discovery,":[4],"where":[5],"the":[6,9,43,49,52,64,77,83,93,97,105,139,154,161,170,179,193],"cloud":[7],"collects":[8],"sensing":[11,29,53,176,195],"results":[12,54,168],"from":[13,76],"many":[14,123],"smartphones":[15],"and":[16,41,136,166],"predicts":[17],"location-specific":[18],"availability":[20],"based":[21],"on":[22],"information":[23],"fusion.":[24],"Observe":[25],"that":[26,85,104,138,172],"with":[27,173],"limited":[28,37],"capability,":[30],"each":[31,46,118,142,174],"smartphone":[32,47,119,132,143,175],"can":[33],"sense":[34,84,121,146],"only":[35,90],"a":[36,59,69,130],"number":[38],"of":[39,92,192],"channels;":[40],"further,":[42],"more":[44,177],"channels":[45],"senses,":[48],"less":[50],"accurate":[51],"would":[55,111],"be.":[56],"To":[57],"develop":[58],"comprehensive":[60],"understanding,":[61],"we":[62,128,152],"cast":[63],"discovery":[66],"problem":[67],"as":[68],"matrix":[70,79,94,98,156],"recovery":[71,99,157,180],"problem,":[72,81],"which":[73],"is":[74,102],"different":[75],"classical":[78],"completion":[80],"in":[82,96],"it":[86,116],"suffices":[87],"to":[88,120,145],"determine":[89],"part":[91],"entries":[95],"formulation.":[100],"It":[101],"shown":[103],"widely-used":[106],"similarity-based":[107],"collaborative":[108],"filtering":[109],"method":[110,135],"not":[112],"work":[113],"well":[114],"because":[115,191],"requires":[117],"too":[122],"channels.":[124],"With":[125],"this":[126],"motivation,":[127],"propose":[129],"location-aided":[131,162],"data":[133,163],"fusion":[134,164],"show":[137],"channel":[140],"numbers":[141],"needs":[144],"could":[147],"be":[148],"dramatically":[149],"reduced.":[150],"Moreover,":[151],"analyze":[153],"partial":[155],"performance":[158,181],"by":[159],"using":[160],"method,":[165],"numerical":[167],"corroborate":[169],"intuition":[171],"channels,":[178],"improves":[182],"at":[183],"first":[184],"but":[185],"then":[186],"degrades":[187],"beyond":[188],"some":[189],"point":[190],"decreasing":[194],"accuracy.":[196]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2803875452","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2018,"cited_by_count":1}],"updated_date":"2024-12-07T19:15:41.374558","created_date":"2018-06-01"}