{"id":"https://openalex.org/W2736628396","doi":"https://doi.org/10.23919/mva.2017.7986834","title":"Hierarchical zero-shot classification with convolutional neural network features and semantic attribute learning","display_name":"Hierarchical zero-shot classification with convolutional neural network features and semantic attribute learning","publication_year":2017,"publication_date":"2017-05-01","ids":{"openalex":"https://openalex.org/W2736628396","doi":"https://doi.org/10.23919/mva.2017.7986834","mag":"2736628396"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/mva.2017.7986834","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5017757715","display_name":"J. Markowitz","orcid":null},"institutions":[{"id":"https://openalex.org/I2802946424","display_name":"Johns Hopkins University Applied Physics Laboratory","ror":"https://ror.org/029pp9z10","country_code":"US","type":"facility","lineage":["https://openalex.org/I145311948","https://openalex.org/I2802946424"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jared Markowitz","raw_affiliation_strings":["Johns Hopkins University Applied Physics Laboratory, MD, USA"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University Applied Physics Laboratory, MD, USA","institution_ids":["https://openalex.org/I2802946424"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037432599","display_name":"Aurora Schmidt","orcid":"https://orcid.org/0000-0001-9027-8484"},"institutions":[{"id":"https://openalex.org/I2802946424","display_name":"Johns Hopkins University Applied Physics Laboratory","ror":"https://ror.org/029pp9z10","country_code":"US","type":"facility","lineage":["https://openalex.org/I145311948","https://openalex.org/I2802946424"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Aurora C. Schmidt","raw_affiliation_strings":["Johns Hopkins University Applied Physics Laboratory, MD, USA"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University Applied Physics Laboratory, MD, USA","institution_ids":["https://openalex.org/I2802946424"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078445265","display_name":"Philippe Burlina","orcid":"https://orcid.org/0000-0002-6353-0880"},"institutions":[{"id":"https://openalex.org/I2802946424","display_name":"Johns Hopkins University Applied Physics Laboratory","ror":"https://ror.org/029pp9z10","country_code":"US","type":"facility","lineage":["https://openalex.org/I145311948","https://openalex.org/I2802946424"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Philippe M. Burlina","raw_affiliation_strings":["Johns Hopkins University Applied Physics Laboratory, MD, USA"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University Applied Physics Laboratory, MD, USA","institution_ids":["https://openalex.org/I2802946424"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5109618222","display_name":"I-Jeng Wang","orcid":null},"institutions":[{"id":"https://openalex.org/I2802946424","display_name":"Johns Hopkins University Applied Physics Laboratory","ror":"https://ror.org/029pp9z10","country_code":"US","type":"facility","lineage":["https://openalex.org/I145311948","https://openalex.org/I2802946424"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"I-Jeng Wang","raw_affiliation_strings":["Johns Hopkins University Applied Physics Laboratory, MD, USA"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University Applied Physics Laboratory, MD, USA","institution_ids":["https://openalex.org/I2802946424"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.152,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.469922,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"194","last_page":"197"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.4274901},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.4224153}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8045262},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.68433034},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6506613},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.59140825},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.56035066},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45884192},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.4274901},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.42628708},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.4224153},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.41016483},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3666956},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.25067985},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/mva.2017.7986834","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W141352744","https://openalex.org/W1487583988","https://openalex.org/W1599454686","https://openalex.org/W1618905105","https://openalex.org/W1974907760","https://openalex.org/W2008835805","https://openalex.org/W2108598243","https://openalex.org/W2118585731","https://openalex.org/W2121526711","https://openalex.org/W2124033848","https://openalex.org/W2128532956","https://openalex.org/W2143042756","https://openalex.org/W2150295085","https://openalex.org/W2156406284","https://openalex.org/W2295389194","https://openalex.org/W2570343428","https://openalex.org/W2951433694","https://openalex.org/W2963542991","https://openalex.org/W3106051827","https://openalex.org/W3143107425","https://openalex.org/W4235505822","https://openalex.org/W4295306962"],"related_works":["https://openalex.org/W4360783045","https://openalex.org/W3176438653","https://openalex.org/W3167930666","https://openalex.org/W3014952856","https://openalex.org/W2981877337","https://openalex.org/W2963346891","https://openalex.org/W2952813363","https://openalex.org/W2770149305","https://openalex.org/W2357114597","https://openalex.org/W2115416187"],"abstract_inverted_index":{"We":[0,58,93,118],"examine":[1],"hierarchical":[2,23],"approaches":[3],"to":[4,104],"image":[5],"classification":[6,24],"problems":[7],"that":[8,25,120],"include":[9],"categories":[10],"for":[11,72,82],"which":[12,73,83],"we":[13,38,74,84],"have":[14,75],"no":[15],"training":[16],"examples.":[17],"Building":[18],"on":[19,48,114],"prior":[20],"work":[21],"in":[22,31,128,137],"optimizes":[26],"the":[27,40,46,67,90,121,125,141],"trade-off":[28],"between":[29],"depth":[30],"a":[32,60],"tree":[33],"and":[34,53,81,130,133],"accuracy":[35],"of":[36,42,45,62,124,143],"placement,":[37],"compare":[39],"performance":[41],"multiple":[43],"formulations":[44],"problem":[47],"both":[49],"previously":[50,54],"seen":[51],"(non-novel)":[52],"unseen":[55],"(novel)":[56],"classes.":[57],"use":[59],"subset":[61],"150":[63],"object":[64],"classes":[65],"from":[66,102],"ImageNet":[68],"ILSVRC2012":[69],"data":[70],"set,":[71],"218":[76],"human-annotated":[77],"semantic":[78,115],"attribute":[79,116],"labels":[80],"compute":[85],"deep":[86],"convolutional":[87],"features":[88],"using":[89,98],"OVERFEAT":[91],"network.":[92],"quantitatively":[94],"evaluate":[95],"several":[96],"approaches,":[97],"input":[99,111],"posteriors":[100,112],"derived":[101],"distances":[103],"SVM":[105],"classifier":[106],"boundaries":[107],"as":[108,110],"well":[109],"based":[113],"estimation.":[117],"find":[119],"relative":[122],"performances":[123],"methods":[126],"differ":[127],"non-novel":[129],"novel":[131,138],"applications":[132,139],"achieve":[134],"information":[135],"gains":[136],"through":[140],"incorporation":[142],"attribute-based":[144],"posteriors.":[145]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2736628396","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2017,"cited_by_count":1}],"updated_date":"2024-12-10T11:07:30.228890","created_date":"2017-07-31"}