{"id":"https://openalex.org/W2890698739","doi":"https://doi.org/10.23919/icif.2018.8455321","title":"Deep Learning for Military Image Captioning","display_name":"Deep Learning for Military Image Captioning","publication_year":2018,"publication_date":"2018-07-01","ids":{"openalex":"https://openalex.org/W2890698739","doi":"https://doi.org/10.23919/icif.2018.8455321","mag":"2890698739"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/icif.2018.8455321","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5025082018","display_name":"Subrata Das","orcid":"https://orcid.org/0000-0002-7118-5490"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Subrata Das","raw_affiliation_strings":["Data Science Division, Machine Analytics, Belmont, MA, USA"],"affiliations":[{"raw_affiliation_string":"Data Science Division, Machine Analytics, Belmont, MA, USA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083730924","display_name":"Lalit Jain","orcid":"https://orcid.org/0000-0002-1087-724X"},"institutions":[{"id":"https://openalex.org/I12912129","display_name":"Northeastern University","ror":"https://ror.org/04t5xt781","country_code":"US","type":"funder","lineage":["https://openalex.org/I12912129"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Lalit Jain","raw_affiliation_strings":["Northeastern University, Boston, MA, USA"],"affiliations":[{"raw_affiliation_string":"Northeastern University, Boston, MA, USA","institution_ids":["https://openalex.org/I12912129"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5012031382","display_name":"Arup Kumar Das","orcid":"https://orcid.org/0000-0001-5367-2466"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Arup Das","raw_affiliation_strings":["Data Science Division, Alphaserve Technologies, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Data Science Division, Alphaserve Technologies, New York, NY, USA","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.563,"has_fulltext":false,"cited_by_count":21,"citation_normalized_percentile":{"value":0.707647,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":"2165","last_page":"2171"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9928,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/closed-captioning","display_name":"Closed captioning","score":0.8435191},{"id":"https://openalex.org/keywords/sensor-fusion","display_name":"Sensor Fusion","score":0.51136416},{"id":"https://openalex.org/keywords/modality","display_name":"Modality (human\u2013computer interaction)","score":0.46964046}],"concepts":[{"id":"https://openalex.org/C157657479","wikidata":"https://www.wikidata.org/wiki/Q2367247","display_name":"Closed captioning","level":3,"score":0.8435191},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7788051},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.7032876},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.67198324},{"id":"https://openalex.org/C33954974","wikidata":"https://www.wikidata.org/wiki/Q486494","display_name":"Sensor fusion","level":2,"score":0.51136416},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.47838154},{"id":"https://openalex.org/C2780226545","wikidata":"https://www.wikidata.org/wiki/Q6888030","display_name":"Modality (human\u2013computer interaction)","level":2,"score":0.46964046},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.42903802},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32427385},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.32091027},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.24662653},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.21008608},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/icif.2018.8455321","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.67}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1548328233","https://openalex.org/W1614298861","https://openalex.org/W1689711448","https://openalex.org/W1752472581","https://openalex.org/W1897761818","https://openalex.org/W196214544","https://openalex.org/W1966532833","https://openalex.org/W2008008156","https://openalex.org/W2025768430","https://openalex.org/W2064675550","https://openalex.org/W2066134726","https://openalex.org/W2097117768","https://openalex.org/W2112796928","https://openalex.org/W2133564696","https://openalex.org/W2143612262","https://openalex.org/W2147768505","https://openalex.org/W2152175008","https://openalex.org/W2155893237","https://openalex.org/W2157331557","https://openalex.org/W2163605009","https://openalex.org/W2183341477","https://openalex.org/W2184188583","https://openalex.org/W2410591237","https://openalex.org/W2463955103","https://openalex.org/W2782522152","https://openalex.org/W2919115771","https://openalex.org/W2963956866","https://openalex.org/W4294170691","https://openalex.org/W790225446"],"related_works":["https://openalex.org/W4388893791","https://openalex.org/W4290852288","https://openalex.org/W4283207562","https://openalex.org/W4210416330","https://openalex.org/W3088136942","https://openalex.org/W2963177403","https://openalex.org/W2949522393","https://openalex.org/W2949362007","https://openalex.org/W2775506363","https://openalex.org/W2330246314"],"abstract_inverted_index":{"US":[0],"Department":[1],"of":[2,97,112,128,152,160,169,187,198,266],"Defense":[3],"(DoD)":[4],"big":[5,98,129],"data":[6,28,83,99],"is":[7,65,71,181,207,233,294],"extensively":[8],"multimodal":[9,153],"and":[10,17,21,26,35,73,76,80,88,94,137,164,194,204,217,254,307,316],"multiple":[11,126],"intelligence":[12],"(multi-INT),":[13],"where":[14],"structured":[15],"sensor":[16],"unstructured":[18],"audio,":[19],"video":[20,89],"textual":[22],"ISR":[23],"(Intelligence,":[24],"Surveillance,":[25],"Reconnaissance)":[27],"are":[29,54,299,304,314],"generated":[30,300],"by":[31],"numerous":[32],"air,":[33],"ground,":[34],"space":[36],"borne":[37],"sensors":[38],"along":[39],"with":[40,212,241,271],"human":[41],"intelligence.":[42],"Data":[43],"fusion":[44,147,177],"at":[45,139],"all":[46],"levels":[47],"\"remains":[48],"a":[49,140,150,236,249,260],"challenging":[50],"task.\"":[51],"While":[52],"there":[53,64],"algorithmic":[55],"stove-piped":[56],"systems":[57],"that":[58,70,84],"work":[59],"well":[60],"on":[61,119,235],"individual":[62],"modalities,":[63],"no":[66],"system":[67],"to":[68,124,182,190,215,276,282],"date":[69],"mission":[72],"source":[74],"agnostics":[75],"can":[77],"seamlessly":[78],"integrate":[79],"correlate":[81],"multi-INT":[82],"includes":[85],"textual,":[86],"hyperspectral,":[87],"content.":[90],"The":[91,230,286,297],"considerable":[92],"volume":[93],"velocity":[95],"aspects":[96],"only":[100],"compound":[101],"the":[102,110,145,157,161,185,205,224,242,255,267,278,283,290,308],"aforementioned":[103],"encountered":[104],"in":[105,166],"fusion.":[106],"We":[107,172,263],"have":[108,173],"developed":[109],"concept":[111],"\"deep":[113],"fusion\"":[114],"1":[117],"based":[118,234],"deep":[120,146,176,237],"learning":[121],"models":[122,168],"adapted":[123],"process":[125],"modalities":[127],"data.":[130],"Rather":[131],"than":[132],"reducing":[133],"each":[134],"modality":[135],"independently":[136],"fusing":[138],"higher-level":[141],"model":[142,232,245,257],"(feature-level":[143],"fusion),":[144],"approach":[148],"generates":[149],"set":[151],"features,":[154],"thereby":[155],"maintaining":[156],"core":[158],"properties":[159],"dissimilar":[162],"signals":[163],"resulting":[165],"fused":[167],"higher":[170],"accuracy.":[171],"initiated":[174],"two":[175],"experiments":[178],"-":[179],"one":[180],"automatically":[183],"generate":[184],"caption":[186,228],"an":[188,208],"image":[189,291,303],"help":[191],"analysts":[192],"tagging":[193],"captioning":[195,292],"large":[196],"volumes":[197],"images":[199,275],"gathered":[200],"from":[201,289,301],"collection":[202],"platforms,":[203],"other":[206],"audio-visual":[209],"speech":[210],"classification":[211],"potential":[213],"applications":[214],"lip-reading":[216],"enhanced":[218],"object":[219],"tracking.":[220],"This":[221],"paper":[222],"presents":[223],"proof-of-concept":[225],"demonstration":[226,279],"for":[227],"generation.":[229],"generative":[231],"recurrent":[238],"architecture":[239],"combined":[240],"pre-trained":[243],"image-to-vector":[244],"Inception":[246],"V3":[247],"via":[248,259],"Convolutional":[250],"Neural":[251],"Network":[252],"(CNN)":[253],"word-to-vectors":[256],"word2vec":[258],"skip-gram":[261],"model.":[262],"make":[264,277],"use":[265],"Flickr8K":[268],"dataset":[269],"extended":[270],"some":[272],"military":[273],"specific":[274],"more":[280],"relevant":[281],"DoD":[284],"domain.":[285],"detailed":[287],"results":[288],"experiment":[293],"presented":[295],"here.":[296],"captions":[298],"test":[302],"subjectively":[305],"evaluated":[306],"BLEU":[309],"(bilingual":[310],"evaluation":[311],"understudy)":[312],"scores":[313],"compared":[315],"found":[317],"substantial":[318],"improvements.":[319]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2890698739","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":5}],"updated_date":"2025-04-21T22:36:31.412866","created_date":"2018-09-27"}