{"id":"https://openalex.org/W3117085823","doi":"https://doi.org/10.23919/eusipco47968.2020.9287733","title":"Informed Source Extraction based on Independent Vector Analysis using Eigenvalue Decomposition","display_name":"Informed Source Extraction based on Independent Vector Analysis using Eigenvalue Decomposition","publication_year":2020,"publication_date":"2020-12-18","ids":{"openalex":"https://openalex.org/W3117085823","doi":"https://doi.org/10.23919/eusipco47968.2020.9287733","mag":"3117085823"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/eusipco47968.2020.9287733","pdf_url":null,"source":{"id":"https://openalex.org/S4363607854","display_name":"2021 29th European Signal Processing Conference (EUSIPCO)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5078105594","display_name":"Andreas Brendel","orcid":"https://orcid.org/0000-0002-6051-6346"},"institutions":[{"id":"https://openalex.org/I181369854","display_name":"Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg","ror":"https://ror.org/00f7hpc57","country_code":"DE","type":"education","lineage":["https://openalex.org/I181369854"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Andreas Brendel","raw_affiliation_strings":["Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg, Erlangen, Germany"],"affiliations":[{"raw_affiliation_string":"Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg, Erlangen, Germany","institution_ids":["https://openalex.org/I181369854"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5068787682","display_name":"Walter Kellermann","orcid":"https://orcid.org/0000-0002-6501-3174"},"institutions":[{"id":"https://openalex.org/I181369854","display_name":"Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg","ror":"https://ror.org/00f7hpc57","country_code":"DE","type":"education","lineage":["https://openalex.org/I181369854"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Walter Kellermann","raw_affiliation_strings":["Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg, Erlangen, Germany"],"affiliations":[{"raw_affiliation_string":"Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg, Erlangen, Germany","institution_ids":["https://openalex.org/I181369854"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.393,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.628995,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10640","display_name":"Spectroscopy and Chemometric Analyses","score":0.944,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/finite-impulse-response","display_name":"Finite impulse response","score":0.5914343}],"concepts":[{"id":"https://openalex.org/C120317606","wikidata":"https://www.wikidata.org/wiki/Q17105967","display_name":"Blind signal separation","level":3,"score":0.6703723},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.66660786},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.6394164},{"id":"https://openalex.org/C198386975","wikidata":"https://www.wikidata.org/wiki/Q117785","display_name":"Finite impulse response","level":2,"score":0.5914343},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.5335192},{"id":"https://openalex.org/C70836080","wikidata":"https://www.wikidata.org/wiki/Q837940","display_name":"Impulse (physics)","level":2,"score":0.514391},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.46310514},{"id":"https://openalex.org/C124681953","wikidata":"https://www.wikidata.org/wiki/Q339062","display_name":"Decomposition","level":2,"score":0.45556948},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.42610073},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.42449424},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.35011452},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.23257354},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.22090182},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.090602815},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/eusipco47968.2020.9287733","pdf_url":null,"source":{"id":"https://openalex.org/S4363607854","display_name":"2021 29th European Signal Processing Conference (EUSIPCO)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/12","score":0.58,"display_name":"Responsible consumption and production"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1486890919","https://openalex.org/W1548802052","https://openalex.org/W2013096382","https://openalex.org/W2027884847","https://openalex.org/W2072548008","https://openalex.org/W2096855653","https://openalex.org/W2113145093","https://openalex.org/W2127851351","https://openalex.org/W2134910060","https://openalex.org/W2145700204","https://openalex.org/W2149414429","https://openalex.org/W2170768669","https://openalex.org/W2400273387","https://openalex.org/W2408629183","https://openalex.org/W2494015060","https://openalex.org/W2657204326","https://openalex.org/W285277413","https://openalex.org/W2918296821","https://openalex.org/W2951431217","https://openalex.org/W2997688633","https://openalex.org/W3000508686","https://openalex.org/W3015845848","https://openalex.org/W3016112107","https://openalex.org/W4205778870"],"related_works":["https://openalex.org/W4289145503","https://openalex.org/W2997589526","https://openalex.org/W2889447638","https://openalex.org/W2392054573","https://openalex.org/W2387756483","https://openalex.org/W2383482627","https://openalex.org/W2170833027","https://openalex.org/W2162758065","https://openalex.org/W2099940608","https://openalex.org/W2098862613"],"abstract_inverted_index":{"A":[0],"desired":[1,24,97],"acoustic":[2,36],"source":[3,48,72],"can":[4],"very":[5],"often":[6],"only":[7],"be":[8],"observed":[9],"in":[10,17,73,129],"a":[11,18,27,39,70,88,92,122],"mixture":[12],"together":[13],"with":[14,26],"interfering":[15],"sources":[16],"real-life":[19],"scenario.":[20],"Hence,":[21],"extracting":[22],"the":[23,33,74,81,84,96,107,117],"signal":[25],"minimum":[28],"amount":[29],"of":[30,41,83,116],"information":[31],"about":[32],"geometric":[34],"and":[35,99],"setup":[37],"is":[38,127],"problem":[40],"great":[42],"interest.":[43],"Recently,":[44],"methods":[45],"for":[46,111],"blind":[47],"extraction":[49,85],"based":[50],"on":[51,69,106],"Independent":[52],"Vector":[53],"Analysis":[54],"(IVA)":[55],"have":[56],"been":[57],"proposed.":[58],"These":[59],"algorithms":[60],"are":[61],"entirely":[62],"blind,":[63],"which":[64],"prevents":[65],"them":[66],"from":[67],"focussing":[68],"specific":[71],"mixture.":[75],"In":[76],"this":[77],"contribution,":[78],"we":[79],"guide":[80],"convergence":[82],"filter":[86],"by":[87],"free-field":[89],"prior":[90],"within":[91],"Bayesian":[93],"model":[94],"towards":[95],"solution":[98],"use":[100],"recently":[101,123],"proposed":[102,124],"update":[103,119],"rules":[104,120],"relying":[105],"Eigenvalue":[108],"Decomposition":[109],"(EVD)":[110],"its":[112],"optimization.":[113],"The":[114],"superiority":[115],"presented":[118],"over":[121],"state-of-the-art":[125],"method":[126],"shown":[128],"experiments":[130],"using":[131],"measured":[132],"Room":[133],"Impulse":[134],"Responses":[135],"(RIRs).":[136]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3117085823","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-04T14:41:08.399204","created_date":"2021-01-05"}