{"id":"https://openalex.org/W3114782012","doi":"https://doi.org/10.23919/eusipco47968.2020.9287347","title":"Epileptic EEG Classification Using Synchrosqueezing Transform with Machine and Deep Learning Techniques","display_name":"Epileptic EEG Classification Using Synchrosqueezing Transform with Machine and Deep Learning Techniques","publication_year":2020,"publication_date":"2020-12-18","ids":{"openalex":"https://openalex.org/W3114782012","doi":"https://doi.org/10.23919/eusipco47968.2020.9287347","mag":"3114782012"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/eusipco47968.2020.9287347","pdf_url":null,"source":{"id":"https://openalex.org/S4363607854","display_name":"2021 29th European Signal Processing Conference (EUSIPCO)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5043963300","display_name":"\u00d6zlem Karabiber Cura","orcid":"https://orcid.org/0000-0001-8650-1137"},"institutions":[{"id":"https://openalex.org/I250383648","display_name":"Izmir K\u00e2tip \u00c7elebi University","ror":"https://ror.org/024nx4843","country_code":"TR","type":"education","lineage":["https://openalex.org/I250383648"]}],"countries":["TR"],"is_corresponding":false,"raw_author_name":"Ozlem Karabiber Cura","raw_affiliation_strings":["Dept. of Biomedical Engineering, Izmir Katip Celebi University, Izmir, TURKEY"],"affiliations":[{"raw_affiliation_string":"Dept. of Biomedical Engineering, Izmir Katip Celebi University, Izmir, TURKEY","institution_ids":["https://openalex.org/I250383648"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088292562","display_name":"Mehmet Akif \u00d6zdemir","orcid":"https://orcid.org/0000-0002-8758-113X"},"institutions":[{"id":"https://openalex.org/I250383648","display_name":"Izmir K\u00e2tip \u00c7elebi University","ror":"https://ror.org/024nx4843","country_code":"TR","type":"education","lineage":["https://openalex.org/I250383648"]}],"countries":["TR"],"is_corresponding":false,"raw_author_name":"Mehmet Akif Ozdemir","raw_affiliation_strings":["Dept. of Biomedical Engineering, Izmir Katip Celebi University, Izmir, TURKEY"],"affiliations":[{"raw_affiliation_string":"Dept. of Biomedical Engineering, Izmir Katip Celebi University, Izmir, TURKEY","institution_ids":["https://openalex.org/I250383648"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5012672901","display_name":"Ayd\u0131n Akan","orcid":"https://orcid.org/0000-0001-8894-5794"},"institutions":[{"id":"https://openalex.org/I15059493","display_name":"\u0130zmir University of Economics","ror":"https://ror.org/04hjr4202","country_code":"TR","type":"education","lineage":["https://openalex.org/I15059493"]}],"countries":["TR"],"is_corresponding":false,"raw_author_name":"Aydin Akan","raw_affiliation_strings":["Dept. of Electrical and Electronics, Eng. Izmir University of Economics, Izmir, TURKEY"],"affiliations":[{"raw_affiliation_string":"Dept. of Electrical and Electronics, Eng. Izmir University of Economics, Izmir, TURKEY","institution_ids":["https://openalex.org/I15059493"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.392,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.227605,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":73},"biblio":{"volume":null,"issue":null,"first_page":"1210","last_page":"1214"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9808,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C522805319","wikidata":"https://www.wikidata.org/wiki/Q179965","display_name":"Electroencephalography","level":2,"score":0.7476356},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7325965},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.69618547},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.56097007},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.52106875},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.46091276},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3277219},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.13554731},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.11067024}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/eusipco47968.2020.9287347","pdf_url":null,"source":{"id":"https://openalex.org/S4363607854","display_name":"2021 29th European Signal Processing Conference (EUSIPCO)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.41,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W2081146518","https://openalex.org/W2742472784","https://openalex.org/W2754962589","https://openalex.org/W2809254203","https://openalex.org/W2899586412","https://openalex.org/W2910136977","https://openalex.org/W2914978058","https://openalex.org/W2939785619","https://openalex.org/W2985003680","https://openalex.org/W2990035072","https://openalex.org/W2990238942","https://openalex.org/W2995435729","https://openalex.org/W2999385394","https://openalex.org/W3001901462","https://openalex.org/W3003074332","https://openalex.org/W3006129733","https://openalex.org/W3007241070","https://openalex.org/W3011154529"],"related_works":["https://openalex.org/W4380075502","https://openalex.org/W4312960290","https://openalex.org/W4308951944","https://openalex.org/W4233722919","https://openalex.org/W2988848585","https://openalex.org/W2922348724","https://openalex.org/W2130428257","https://openalex.org/W2057366091","https://openalex.org/W2049513647","https://openalex.org/W200322357"],"abstract_inverted_index":{"Epilepsy":[0],"is":[1,6,35,49,163,173],"a":[2,40,134],"neurological":[3],"disease":[4],"that":[5,149],"very":[7],"common":[8],"worldwide.":[9],"In":[10,37,88,120],"the":[11,25,89,93,121,125,158,166,176],"literature,":[12],"patient's":[13],"electroencephalography":[14],"(EEG)":[15],"signals":[16,34],"are":[17,69,80,100,105],"frequently":[18],"used":[19,50,141],"for":[20,165,175],"an":[21,131],"epilepsy":[22,67],"diagnosis.":[23],"However,":[24],"success":[26],"of":[27,59,65],"epileptic":[28,53],"examination":[29],"procedures":[30],"from":[31],"quantitative":[32],"EEG":[33,54,63],"limited.":[36],"this":[38],"paper,":[39],"high-resolution":[41],"time-frequency":[42],"(TF)":[43],"representation":[44],"called":[45],"Synchrosqueezed":[46],"Transform":[47],"(SST)":[48],"to":[51,82,142],"classify":[52,83,143],"signals.":[55,87],"The":[56],"SST":[57,126],"matrices":[58],"seizure":[60,86],"and":[61,77,85,102,115,133],"pre-seizure":[62,84],"data":[64],"16":[66],"patients":[68],"calculated.":[70],"Two":[71],"approaches":[72,151],"based":[73],"on":[74],"machine":[75,90,167],"learning":[76,79],"deep":[78,122,177],"proposed":[81],"learning-based":[91,123,168,178],"approach,":[92,124,169],"various":[94],"features":[95,104],"like":[96],"higher-order":[97],"joint":[98],"moments":[99],"calculated":[101],"these":[103,144],"classified":[106],"by":[107],"Support":[108],"Vector":[109],"Machine":[110],"(SVM),":[111],"k-Nearest":[112],"Neighbor":[113],"(kNN)":[114],"Naive":[116],"Bayes":[117],"(NB)":[118],"classifiers.":[119],"matrix":[127],"was":[128,140],"recorded":[129],"as":[130],"image":[132],"Convolutional":[135],"Neural":[136],"Network":[137],"(CNN)-based":[138],"architecture":[139],"images.":[145],"Simulation":[146],"results":[147],"demonstrate":[148],"both":[150],"achieved":[152,164,174],"promising":[153],"validation":[154,161,171],"accuracy":[155,162,172],"rates.":[156],"While":[157],"maximum":[159],"(90.2%)":[160],"(90.3%)":[170],"approach.":[179]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3114782012","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2024-12-28T05:42:08.999280","created_date":"2021-01-05"}