{"id":"https://openalex.org/W2963364701","doi":"https://doi.org/10.23919/biosig.2018.8552937","title":"Unsupervised Facial Geometry Learning for Sketch to Photo Synthesis","display_name":"Unsupervised Facial Geometry Learning for Sketch to Photo Synthesis","publication_year":2018,"publication_date":"2018-09-01","ids":{"openalex":"https://openalex.org/W2963364701","doi":"https://doi.org/10.23919/biosig.2018.8552937","mag":"2963364701"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/biosig.2018.8552937","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1810.05361","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5008953033","display_name":"Hadi Kazemi","orcid":"https://orcid.org/0000-0003-4444-7675"},"institutions":[{"id":"https://openalex.org/I12097938","display_name":"West Virginia University","ror":"https://ror.org/011vxgd24","country_code":"US","type":"education","lineage":["https://openalex.org/I12097938"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hadi Kazemi","raw_affiliation_strings":["Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV"],"affiliations":[{"raw_affiliation_string":"Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV","institution_ids":["https://openalex.org/I12097938"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043534833","display_name":"Fariborz Taherkhani","orcid":"https://orcid.org/0000-0001-7966-734X"},"institutions":[{"id":"https://openalex.org/I12097938","display_name":"West Virginia University","ror":"https://ror.org/011vxgd24","country_code":"US","type":"education","lineage":["https://openalex.org/I12097938"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Fariborz Taherkhani","raw_affiliation_strings":["Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV"],"affiliations":[{"raw_affiliation_string":"Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV","institution_ids":["https://openalex.org/I12097938"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5021852735","display_name":"Nasser M. Nasrabadi","orcid":"https://orcid.org/0000-0001-8730-627X"},"institutions":[{"id":"https://openalex.org/I12097938","display_name":"West Virginia University","ror":"https://ror.org/011vxgd24","country_code":"US","type":"education","lineage":["https://openalex.org/I12097938"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nasser M. Nasrabadi","raw_affiliation_strings":["Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV"],"affiliations":[{"raw_affiliation_string":"Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV","institution_ids":["https://openalex.org/I12097938"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.135,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":33,"citation_normalized_percentile":{"value":0.871491,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sketch","display_name":"Sketch","score":0.8890506},{"id":"https://openalex.org/keywords/discriminator","display_name":"Discriminator","score":0.7586142},{"id":"https://openalex.org/keywords/image-translation","display_name":"Image translation","score":0.4286673}],"concepts":[{"id":"https://openalex.org/C2779231336","wikidata":"https://www.wikidata.org/wiki/Q7534724","display_name":"Sketch","level":2,"score":0.8890506},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76541376},{"id":"https://openalex.org/C2779803651","wikidata":"https://www.wikidata.org/wiki/Q5282088","display_name":"Discriminator","level":3,"score":0.7586142},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.74425375},{"id":"https://openalex.org/C2779304628","wikidata":"https://www.wikidata.org/wiki/Q3503480","display_name":"Face (sociological concept)","level":2,"score":0.56208986},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5557232},{"id":"https://openalex.org/C31510193","wikidata":"https://www.wikidata.org/wiki/Q1192553","display_name":"Facial recognition system","level":3,"score":0.44388008},{"id":"https://openalex.org/C8038995","wikidata":"https://www.wikidata.org/wiki/Q1152135","display_name":"Unsupervised learning","level":2,"score":0.42898056},{"id":"https://openalex.org/C2779757391","wikidata":"https://www.wikidata.org/wiki/Q6002292","display_name":"Image translation","level":3,"score":0.4286673},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3661598},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.33784282},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.073583364},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/biosig.2018.8552937","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1810.05361","pdf_url":"https://arxiv.org/pdf/1810.05361","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1810.05361","pdf_url":"https://arxiv.org/pdf/1810.05361","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.72,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W16461587","https://openalex.org/W1980093854","https://openalex.org/W1981902088","https://openalex.org/W1985436611","https://openalex.org/W2010037226","https://openalex.org/W2033419168","https://openalex.org/W2054210502","https://openalex.org/W2099471712","https://openalex.org/W2153288431","https://openalex.org/W2295130376","https://openalex.org/W2326925005","https://openalex.org/W2331128040","https://openalex.org/W2341755855","https://openalex.org/W2344899809","https://openalex.org/W2416283945","https://openalex.org/W2436544366","https://openalex.org/W2475287302","https://openalex.org/W2560481159","https://openalex.org/W2798527618","https://openalex.org/W2912990735","https://openalex.org/W2962793481","https://openalex.org/W2962947361","https://openalex.org/W2963073614","https://openalex.org/W2963840106","https://openalex.org/W2964122907","https://openalex.org/W2976563764","https://openalex.org/W4297749385","https://openalex.org/W4320013936"],"related_works":["https://openalex.org/W4380714744","https://openalex.org/W4293202849","https://openalex.org/W4282977492","https://openalex.org/W3171025045","https://openalex.org/W3002928964","https://openalex.org/W2936485314","https://openalex.org/W2918279720","https://openalex.org/W2387995142","https://openalex.org/W1980965563","https://openalex.org/W1489300767"],"abstract_inverted_index":{"Face":[0],"sketch-photo":[1,38,171],"synthesis":[2],"is":[3,17],"a":[4,23,48,73,77,95,125,142,147],"critical":[5],"application":[6],"in":[7,62,80,118,139,146,150],"law":[8],"enforcement":[9],"and":[10,27,56,152],"digital":[11],"entertainment":[12],"industry":[13],"where":[14],"the":[15,20,33,43,52,101,111,115,119,129,135,156,161],"goal":[16],"to":[18,46,71,86,99,113],"learn":[19,47,100],"mapping":[21,50],"between":[22,51],"face":[24,78,120,130],"sketch":[25,79],"image":[26,75],"its":[28],"corresponding":[29],"photo-realistic":[30,59,74],"image.":[31],"However,":[32],"limited":[34],"number":[35],"of":[36,54,103,128,155],"paired":[37],"training":[39],"data":[40],"usually":[41],"prevents":[42],"current":[44,87],"frameworks":[45],"robust":[49],"geometry":[53,102],"sketches":[55],"their":[57],"matching":[58],"images.":[60],"Consequently,":[61],"this":[63],"work,":[64],"we":[65],"present":[66],"an":[67,81],"approach":[68],"for":[69],"learning":[70],"synthesize":[72],"from":[76],"unsupervised":[82,88],"fashion.":[83],"In":[84],"contrast":[85],"image-to-image":[89],"translation":[90],"techniques,":[91],"our":[92],"framework":[93],"leverages":[94],"novel":[96],"perceptual":[97,137],"discriminator":[98,138],"human":[104],"face.":[105],"Learning":[106],"racial":[107],"prior":[108],"information":[109],"empowers":[110],"network":[112,163],"remove":[114],"geometrical":[116],"artifacts":[117],"sketch.":[121],"We":[122,159],"demonstrate":[123],"that":[124],"simultaneous":[126],"optimization":[127],"photo":[131],"generator":[132],"network,":[133],"employing":[134],"proposed":[136,162],"combination":[140],"with":[141],"texture-wise":[143],"discriminator,":[144],"results":[145],"significant":[148],"improvement":[149],"quality":[151],"recognition":[153],"rate":[154],"synthesized":[157],"photos.":[158],"evaluate":[160],"by":[164],"conducting":[165],"extensive":[166],"experiments":[167],"on":[168],"multiple":[169],"baseline":[170],"datasets.":[172]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963364701","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":13},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":7}],"updated_date":"2024-12-11T17:43:32.521947","created_date":"2019-07-30"}