{"id":"https://openalex.org/W3183524654","doi":"https://doi.org/10.23919/acc50511.2021.9482843","title":"Point-based Value Iteration for VAR-POMDPs","display_name":"Point-based Value Iteration for VAR-POMDPs","publication_year":2021,"publication_date":"2021-05-25","ids":{"openalex":"https://openalex.org/W3183524654","doi":"https://doi.org/10.23919/acc50511.2021.9482843","mag":"3183524654"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/acc50511.2021.9482843","pdf_url":null,"source":{"id":"https://openalex.org/S4363607732","display_name":"2022 American Control Conference (ACC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5019036867","display_name":"Wei Zheng","orcid":"https://orcid.org/0000-0002-4642-1447"},"institutions":[{"id":"https://openalex.org/I107639228","display_name":"University of Notre Dame","ror":"https://ror.org/00mkhxb43","country_code":"US","type":"funder","lineage":["https://openalex.org/I107639228"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wei Zheng","raw_affiliation_strings":["Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA","institution_ids":["https://openalex.org/I107639228"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5045445273","display_name":"Hai Lin","orcid":"https://orcid.org/0000-0002-5242-2366"},"institutions":[{"id":"https://openalex.org/I107639228","display_name":"University of Notre Dame","ror":"https://ror.org/00mkhxb43","country_code":"US","type":"funder","lineage":["https://openalex.org/I107639228"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hai Lin","raw_affiliation_strings":["Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA","institution_ids":["https://openalex.org/I107639228"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":56},"biblio":{"volume":null,"issue":null,"first_page":"1143","last_page":"1148"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10142","display_name":"Formal Methods in Verification","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/value","display_name":"Value (mathematics)","score":0.43231404}],"concepts":[{"id":"https://openalex.org/C17098449","wikidata":"https://www.wikidata.org/wiki/Q176814","display_name":"Partially observable Markov decision process","level":4,"score":0.94581103},{"id":"https://openalex.org/C106189395","wikidata":"https://www.wikidata.org/wiki/Q176789","display_name":"Markov decision process","level":3,"score":0.7830763},{"id":"https://openalex.org/C14646407","wikidata":"https://www.wikidata.org/wiki/Q1430750","display_name":"Bellman equation","level":2,"score":0.6988437},{"id":"https://openalex.org/C32848918","wikidata":"https://www.wikidata.org/wiki/Q845789","display_name":"Observable","level":2,"score":0.6550257},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6298651},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.615138},{"id":"https://openalex.org/C34388435","wikidata":"https://www.wikidata.org/wiki/Q2267362","display_name":"Bounded function","level":2,"score":0.613268},{"id":"https://openalex.org/C37404715","wikidata":"https://www.wikidata.org/wiki/Q380679","display_name":"Dynamic programming","level":2,"score":0.5978457},{"id":"https://openalex.org/C2776291640","wikidata":"https://www.wikidata.org/wiki/Q2912517","display_name":"Value (mathematics)","level":2,"score":0.43231404},{"id":"https://openalex.org/C114073186","wikidata":"https://www.wikidata.org/wiki/Q2631895","display_name":"Automated planning and scheduling","level":2,"score":0.41421676},{"id":"https://openalex.org/C159886148","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov process","level":2,"score":0.40036857},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.32132876},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.20753029},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.11547804},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/acc50511.2021.9482843","pdf_url":null,"source":{"id":"https://openalex.org/S4363607732","display_name":"2022 American Control Conference (ACC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.54,"id":"https://metadata.un.org/sdg/16"}],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"IIS-1724070,CNS-1830335,IIS-2007949"}],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1482467703","https://openalex.org/W1532688806","https://openalex.org/W1565394148","https://openalex.org/W2025217226","https://openalex.org/W2055501135","https://openalex.org/W2055921164","https://openalex.org/W2142819538","https://openalex.org/W2144088174","https://openalex.org/W2438667436","https://openalex.org/W2795496197","https://openalex.org/W2896292273","https://openalex.org/W2942224903","https://openalex.org/W2953074437","https://openalex.org/W2990914639"],"related_works":["https://openalex.org/W52153049","https://openalex.org/W4385342861","https://openalex.org/W4281791088","https://openalex.org/W2951545791","https://openalex.org/W2903299703","https://openalex.org/W2096013579","https://openalex.org/W1760611253","https://openalex.org/W159191692","https://openalex.org/W1589140671","https://openalex.org/W1574958246"],"abstract_inverted_index":{"Partially":[0],"observable":[1,35],"Markov":[2,36],"decision":[3,37],"processes":[4],"have":[5],"been":[6],"widely":[7],"adopted":[8],"in":[9,86],"the":[10,42,47,66,96,111,122,137,145],"automatic":[11],"planning":[12,63,147],"literature":[13],"since":[14],"it":[15,54],"elegantly":[16],"captures":[17],"both":[18],"execution":[19],"and":[20,108],"observation":[21,82],"uncertainties.":[22],"In":[23,91],"our":[24],"previous":[25],"paper,":[26,93],"we":[27,94,134],"proposed":[28,146],"a":[29,56,61,103,127],"model":[30,68,113],"called":[31],"vector":[32],"autoregressive":[33],"partially":[34],"process":[38],"(VAR-POMDP)":[39],"which":[40,84],"extends":[41],"traditional":[43],"POMDP":[44],"by":[45,117,126,151],"considering":[46],"temporal":[48],"correlation":[49],"among":[50],"continuous":[51,89],"observations.":[52],"However,":[53],"is":[55,85,140,149],"non-trivial":[57],"problem":[58],"to":[59,77,102],"develop":[60],"tractable":[62],"algorithm":[64,101,148],"for":[65],"VAR-POMDP":[67,112],"with":[69],"performance":[70],"guarantees":[71],"as":[72],"most":[73],"existing":[74],"algorithms":[75],"need":[76],"explicitly":[78],"enumerate":[79],"all":[80],"possible":[81],"histories,":[83],"an":[87,152],"unbounded":[88],"space.":[90],"this":[92],"extend":[95],"famous":[97],"point-based":[98,105],"value":[99,106,124],"iteration":[100,107],"double":[104],"show":[109],"that":[110,136],"can":[114],"be":[115],"solved":[116],"dynamic":[118],"programming":[119],"through":[120],"approximating":[121],"exact":[123],"function":[125],"class":[128],"of":[129,144],"piece-wise":[130],"linear":[131],"functions.":[132],"Meanwhile,":[133],"prove":[135],"approximation":[138],"error":[139],"bounded.":[141],"The":[142],"effectiveness":[143],"illustrated":[150],"example.":[153]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3183524654","counts_by_year":[],"updated_date":"2025-04-04T10:20:18.394796","created_date":"2021-08-02"}