{"id":"https://openalex.org/W2977620661","doi":"https://doi.org/10.23919/acc.2019.8815199","title":"A Regularized System Identification Approach to Subject-Specific Physiological Modeling with Limited Data","display_name":"A Regularized System Identification Approach to Subject-Specific Physiological Modeling with Limited Data","publication_year":2019,"publication_date":"2019-07-01","ids":{"openalex":"https://openalex.org/W2977620661","doi":"https://doi.org/10.23919/acc.2019.8815199","mag":"2977620661"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/acc.2019.8815199","pdf_url":null,"source":{"id":"https://openalex.org/S4363607732","display_name":"2022 American Control Conference (ACC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5001881563","display_name":"Ali Tivay","orcid":"https://orcid.org/0000-0002-2003-1109"},"institutions":[{"id":"https://openalex.org/I66946132","display_name":"University of Maryland, College Park","ror":"https://ror.org/047s2c258","country_code":"US","type":"education","lineage":["https://openalex.org/I66946132"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ali Tivay","raw_affiliation_strings":["Mechanical Engineering Department, University of Maryland, College Park, MD, USA"],"affiliations":[{"raw_affiliation_string":"Mechanical Engineering Department, University of Maryland, College Park, MD, USA","institution_ids":["https://openalex.org/I66946132"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028295805","display_name":"Ghazal Arabi Darreh Dor","orcid":null},"institutions":[{"id":"https://openalex.org/I66946132","display_name":"University of Maryland, College Park","ror":"https://ror.org/047s2c258","country_code":"US","type":"education","lineage":["https://openalex.org/I66946132"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ghazal Arabi Darreh Dor","raw_affiliation_strings":["Mechanical Engineering Department, University of Maryland, College Park, MD, USA"],"affiliations":[{"raw_affiliation_string":"Mechanical Engineering Department, University of Maryland, College Park, MD, USA","institution_ids":["https://openalex.org/I66946132"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080459058","display_name":"Ramin Bighamian","orcid":"https://orcid.org/0000-0002-2660-0851"},"institutions":[{"id":"https://openalex.org/I1174212","display_name":"University of Southern California","ror":"https://ror.org/03taz7m60","country_code":"US","type":"education","lineage":["https://openalex.org/I1174212"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ramin Bighamian","raw_affiliation_strings":["Electrical Engineering Department, University of Southern California, Los Angeles, CA, USA"],"affiliations":[{"raw_affiliation_string":"Electrical Engineering Department, University of Southern California, Los Angeles, CA, USA","institution_ids":["https://openalex.org/I1174212"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054232363","display_name":"George C. Kramer","orcid":"https://orcid.org/0000-0001-6146-2944"},"institutions":[{"id":"https://openalex.org/I55302922","display_name":"The University of Texas Medical Branch at Galveston","ror":"https://ror.org/016tfm930","country_code":"US","type":"education","lineage":["https://openalex.org/I55302922"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"George C. Kramer","raw_affiliation_strings":["Anesthesiology Department, University of Texas Medical Branch, Galveston, TX, USA"],"affiliations":[{"raw_affiliation_string":"Anesthesiology Department, University of Texas Medical Branch, Galveston, TX, USA","institution_ids":["https://openalex.org/I55302922"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5057276590","display_name":"Jin\u2010Oh Hahn","orcid":"https://orcid.org/0000-0001-5429-2836"},"institutions":[{"id":"https://openalex.org/I66946132","display_name":"University of Maryland, College Park","ror":"https://ror.org/047s2c258","country_code":"US","type":"education","lineage":["https://openalex.org/I66946132"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jin-Oh Hahn","raw_affiliation_strings":["Mechanical Engineering Department, University of Maryland, College Park, MD, USA"],"affiliations":[{"raw_affiliation_string":"Mechanical Engineering Department, University of Maryland, College Park, MD, USA","institution_ids":["https://openalex.org/I66946132"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.45,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.623188,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"3468","last_page":"3473"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10645","display_name":"Cardiac Arrest and Resuscitation","score":0.9648,"subfield":{"id":"https://openalex.org/subfields/2711","display_name":"Emergency Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10645","display_name":"Cardiac Arrest and Resuscitation","score":0.9648,"subfield":{"id":"https://openalex.org/subfields/2711","display_name":"Emergency Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11700","display_name":"Hemodynamic Monitoring and Therapy","score":0.9232,"subfield":{"id":"https://openalex.org/subfields/2746","display_name":"Surgery"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9026,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/identification","display_name":"Identification","score":0.6685754},{"id":"https://openalex.org/keywords/parametric-model","display_name":"Parametric model","score":0.527636},{"id":"https://openalex.org/keywords/population-model","display_name":"Population model","score":0.4649998}],"concepts":[{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.6685754},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6174101},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.5868151},{"id":"https://openalex.org/C21200559","wikidata":"https://www.wikidata.org/wiki/Q7451068","display_name":"Sensitivity (control systems)","level":2,"score":0.58464265},{"id":"https://openalex.org/C119247159","wikidata":"https://www.wikidata.org/wiki/Q1366192","display_name":"System identification","level":3,"score":0.57826},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.57330984},{"id":"https://openalex.org/C24574437","wikidata":"https://www.wikidata.org/wiki/Q7135228","display_name":"Parametric model","level":3,"score":0.527636},{"id":"https://openalex.org/C52079815","wikidata":"https://www.wikidata.org/wiki/Q7229808","display_name":"Population model","level":3,"score":0.4649998},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.4645595},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42004564},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.41623414},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36794978},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21060345},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.1984694},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.19511199},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.08278},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C24326235","wikidata":"https://www.wikidata.org/wiki/Q126095","display_name":"Electronic engineering","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.23919/acc.2019.8815199","pdf_url":null,"source":{"id":"https://openalex.org/S4363607732","display_name":"2022 American Control Conference (ACC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4294845631","https://openalex.org/W3127866798","https://openalex.org/W2952090425","https://openalex.org/W2538333368","https://openalex.org/W2509524819","https://openalex.org/W2289718384","https://openalex.org/W2068427817","https://openalex.org/W2012121796","https://openalex.org/W1995675544","https://openalex.org/W1518153952"],"abstract_inverted_index":{"This":[0,73],"paper":[1],"investigates":[2],"a":[3,34,40,50,78,127,167],"novel":[4],"regularized":[5,51,162],"system":[6,52,86,122,129],"identification":[7,53,87,130],"approach":[8,17,105,163],"to":[9,32,58,63,68,126,179],"physiological":[10,36,121,173],"modeling":[11,174],"using":[12],"limited":[13,23],"data.":[14],"The":[15],"proposed":[16,104,161],"operates":[18],"in":[19,91,114,138,177],"two":[20],"steps:":[21],"1)":[22,108],"data":[24],"from":[25,49,94],"individual":[26,45,144],"subjects":[27],"are":[28,106,164],"consolidated":[29],"and":[30,67,132,157,182],"leveraged":[31],"determine":[33],"population-average":[35,96],"model;":[37],"then,":[38],"2)":[39,133],"subject-specific":[41],"model":[42,140],"for":[43,85,151],"an":[44],"subject":[46],"is":[47,57,74],"derived":[48],"procedure":[54],"whose":[55],"objective":[56],"reconcile":[59],"the":[60,82,95,103,139,149,160],"model's":[61],"capability":[62],"predict":[64],"individual-specific":[65],"behavior":[66],"retain":[69],"typical":[70],"population-representative":[71],"trends.":[72],"achieved":[75],"by":[76],"embedding":[77],"regularizing":[79],"condition":[80],"into":[81],"cost":[83],"function":[84],"that":[88,107],"enforces":[89],"parsimony":[90],"parametric":[92,153],"deviation":[93],"model.":[97],"A":[98],"few":[99],"unique":[100],"advantages":[101],"of":[102,159,175],"it":[109,134],"offers":[110],"superior":[111],"predictive":[112],"accuracy":[113],"both":[115],"measured":[116],"as":[117,119],"well":[118],"unmeasured":[120],"responses":[123],"when":[124],"compared":[125],"standard":[128],"approach;":[131],"provides":[135],"high-sensitivity":[136],"parameters":[137],"associated":[141],"with":[142,166],"each":[143],"subject,":[145],"thus":[146],"potentially":[147],"eliminating":[148],"necessity":[150],"post-hoc":[152],"sensitivity":[154],"analysis.":[155],"Merits":[156],"limitations":[158],"illustrated":[165],"real":[168],"world":[169],"case":[170],"study":[171],"on":[172],"hemodynamics":[176],"response":[178],"burn":[180],"injury":[181],"resuscitation.":[183]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2977620661","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2020,"cited_by_count":3}],"updated_date":"2024-12-12T10:28:37.475994","created_date":"2019-10-10"}