{"id":"https://openalex.org/W2566769445","doi":"https://doi.org/10.2352/issn.2470-1173.2016.3.vstia-512","title":"Pedestrian’s Intention Prediction Based on Fuzzy Finite Automata and Spatial-temporal Features","display_name":"Pedestrian’s Intention Prediction Based on Fuzzy Finite Automata and Spatial-temporal Features","publication_year":2016,"publication_date":"2016-02-14","ids":{"openalex":"https://openalex.org/W2566769445","doi":"https://doi.org/10.2352/issn.2470-1173.2016.3.vstia-512","mag":"2566769445"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.2352/issn.2470-1173.2016.3.vstia-512","pdf_url":null,"source":{"id":"https://openalex.org/S4210227276","display_name":"Electronic Imaging","issn_l":"2470-1173","issn":["2470-1173"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5048334474","display_name":"Joon-Young Kwak","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Joon-Young Kwak","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100437671","display_name":"Eunju Lee","orcid":"https://orcid.org/0000-0002-7200-4065"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Eun-Ju Lee","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035256239","display_name":"Byoung Chul Ko","orcid":"https://orcid.org/0000-0002-7284-0768"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"ByoungChul Ko","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5066130745","display_name":"Mira Jeong","orcid":"https://orcid.org/0000-0002-7492-7795"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mira Jeong","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.859,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":9,"citation_normalized_percentile":{"value":0.799239,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":"28","issue":"3","first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9757,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9757,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11500","display_name":"Evacuation and Crowd Dynamics","score":0.9651,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9503,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2777113093","wikidata":"https://www.wikidata.org/wiki/Q221488","display_name":"Pedestrian","level":2,"score":0.8113934},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5114416},{"id":"https://openalex.org/C13662910","wikidata":"https://www.wikidata.org/wiki/Q193139","display_name":"Trajectory","level":2,"score":0.5080967},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38239503},{"id":"https://openalex.org/C44154836","wikidata":"https://www.wikidata.org/wiki/Q45045","display_name":"Simulation","level":1,"score":0.35021347},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.34797624},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.26278734},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.25954384},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.2352/issn.2470-1173.2016.3.vstia-512","pdf_url":null,"source":{"id":"https://openalex.org/S4210227276","display_name":"Electronic Imaging","issn_l":"2470-1173","issn":["2470-1173"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.69}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3116076068","https://openalex.org/W2775347418","https://openalex.org/W2772917594","https://openalex.org/W2755342338","https://openalex.org/W2229312674","https://openalex.org/W2166024367","https://openalex.org/W2079911747","https://openalex.org/W2058170566","https://openalex.org/W2036807459","https://openalex.org/W1969923398"],"abstract_inverted_index":{"In":[0,110],"this":[1,111],"research,":[2],"we":[3,46,168],"present":[4],"a":[5,25,77,83,96,163,171],"novel":[6],"Fuzzy":[7],"Finite":[8],"Automat":[9],"(FFA)":[10],"for":[11,15,105,158],"predicting":[12],"pedestrian's":[13,59],"intention":[14],"advanced":[16],"driver":[17],"assistant":[18],"system.":[19],"Because":[20],"dangerous":[21],"pedestrians":[22],"generally":[23],"have":[24],"higher":[26],"moving":[27,31],"velocity":[28],"and":[29,72,79,85,87,90,93,127,129,140,167,189],"lateral":[30],"direction":[32],"than":[33],"the":[34,43,48,67,106,113,187],"'standing'":[35],"pedestrian":[36,52,78,84,183],"as":[37,39,58,123],"well":[38],"tracking":[40],"trajectory":[41],"in":[42],"time":[44],"domain,":[45,74],"estimate":[47],"state":[49,107,145],"probability":[50,102],"of":[51,95,119,186],"by":[53,149],"considering":[54],"spatial":[55,73],"domain":[56],"such":[57],"face":[60],"(looking":[61],"back":[62],"or":[63],"not).":[64],"To":[65],"consider":[66],"above":[68],"characteristics":[69],"over":[70],"temporal":[71],"'distance":[75,81],"between":[76,82],"curb',":[80],"vehicle',":[86],"'head":[88],"orientation":[89,91],"variation',":[92],"'speed":[94],"pedestrian'":[97],"are":[98,121,147],"used":[99],"to":[100,133,181],"generate":[101],"density":[103],"functions":[104],"transition":[108,151],"value.":[109],"paper,":[112],"four":[114],"states":[115,131],"connected":[116],"with":[117],"transitions":[118],"FFA":[120],"defined":[122],"Walking-SW,":[124],"Standing,":[125],"W-Crossing,":[126],"R-Crossing,":[128],"these":[130],"correspond":[132],"\"walking":[134,138],"sidewalk,\"":[135,137],"\"standing":[136],"crossing,\"":[139,142],"\"running":[141],"respectively.":[143],"The":[144,175],"changes":[146],"controlled":[148],"various":[150,182],"probabilities.":[152],"There":[153],"is":[154],"no":[155],"standard":[156],"dataset":[157],"evaluating":[159],"prediction":[160,173,193],"performance":[161],"using":[162],"stereo":[164],"thermal":[165],"camera,":[166],"therefore":[169],"created":[170],"KMU":[172],"dataset.":[174],"proposed":[176],"algorithm":[177],"was":[178],"successfully":[179],"applied":[180],"video":[184],"sequences":[185],"dataset,":[188],"showed":[190],"an":[191],"accurate":[192],"performance.":[194]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2566769445","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":2},{"year":2016,"cited_by_count":1}],"updated_date":"2024-12-11T20:28:48.869659","created_date":"2017-01-06"}