{"id":"https://openalex.org/W3212809894","doi":"https://doi.org/10.2352/ei.2022.34.5.mlsi-202","title":"Advantage of Machine Learning over Maximum Likelihood in Limited-Angle Low-Photon X-Ray Tomography","display_name":"Advantage of Machine Learning over Maximum Likelihood in Limited-Angle Low-Photon X-Ray Tomography","publication_year":2022,"publication_date":"2022-01-16","ids":{"openalex":"https://openalex.org/W3212809894","doi":"https://doi.org/10.2352/ei.2022.34.5.mlsi-202","mag":"3212809894"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.2352/ei.2022.34.5.mlsi-202","pdf_url":"https://library.imaging.org/admin/apis/public/api/ist/website/downloadArticle/ei/34/5/MLSI-202","source":{"id":"https://openalex.org/S4210227276","display_name":"Electronic Imaging","issn_l":"2470-1173","issn":["2470-1173"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://library.imaging.org/admin/apis/public/api/ist/website/downloadArticle/ei/34/5/MLSI-202","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100329572","display_name":"Zhen Guo","orcid":"https://orcid.org/0000-0002-1347-3451"},"institutions":[{"id":"https://openalex.org/I63966007","display_name":"Massachusetts Institute of Technology","ror":"https://ror.org/042nb2s44","country_code":"US","type":"education","lineage":["https://openalex.org/I63966007"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhen Guo","raw_affiliation_strings":["Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Mas-sachusetts, 02139, USA;"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Mas-sachusetts, 02139, USA;","institution_ids":["https://openalex.org/I63966007"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036849416","display_name":"Jung Ki Song","orcid":null},"institutions":[{"id":"https://openalex.org/I4210167254","display_name":"Singapore-MIT Alliance for Research and Technology","ror":"https://ror.org/05yb3w112","country_code":"SG","type":"education","lineage":["https://openalex.org/I4210167254"]},{"id":"https://openalex.org/I63966007","display_name":"Massachusetts Institute of Technology","ror":"https://ror.org/042nb2s44","country_code":"US","type":"education","lineage":["https://openalex.org/I63966007"]}],"countries":["SG","US"],"is_corresponding":false,"raw_author_name":"Jung Ki Song","raw_affiliation_strings":["Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA; George Barbastathis, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singa-pore 138002;"],"affiliations":[{"raw_affiliation_string":"Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA; George Barbastathis, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singa-pore 138002;","institution_ids":["https://openalex.org/I4210167254","https://openalex.org/I63966007"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034049110","display_name":"George Barbastathis","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"George Barbastathis","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011034449","display_name":"Michael E. Glinsky","orcid":"https://orcid.org/0000-0003-2493-3326"},"institutions":[{"id":"https://openalex.org/I4210104735","display_name":"Sandia National Laboratories","ror":"https://ror.org/01apwpt12","country_code":"US","type":"facility","lineage":["https://openalex.org/I1330989302","https://openalex.org/I198811213","https://openalex.org/I4210104735"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Michael E. Glinsky","raw_affiliation_strings":["Sandia National Laboratory Albuquerque, New Mexico, 87123, USA;"],"affiliations":[{"raw_affiliation_string":"Sandia National Laboratory Albuquerque, New Mexico, 87123, USA;","institution_ids":["https://openalex.org/I4210104735"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100111667","display_name":"Courtenay T. Vaughn","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Courtenay T. Vaughn","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110323323","display_name":"Kurt W. Larson","orcid":null},"institutions":[{"id":"https://openalex.org/I4210104735","display_name":"Sandia National Laboratories","ror":"https://ror.org/01apwpt12","country_code":"US","type":"facility","lineage":["https://openalex.org/I1330989302","https://openalex.org/I198811213","https://openalex.org/I4210104735"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kurt W. Larson","raw_affiliation_strings":["Sandia National Laboratory Albuquerque, New Mexico, 87123, USA;"],"affiliations":[{"raw_affiliation_string":"Sandia National Laboratory Albuquerque, New Mexico, 87123, USA;","institution_ids":["https://openalex.org/I4210104735"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079742124","display_name":"Bradley K. Alpert","orcid":"https://orcid.org/0000-0001-9765-9642"},"institutions":[{"id":"https://openalex.org/I1321296531","display_name":"National Institute of Standards and Technology","ror":"https://ror.org/05xpvk416","country_code":"US","type":"government","lineage":["https://openalex.org/I1321296531","https://openalex.org/I1343035065"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Bradley K. Alpert","raw_affiliation_strings":["Applied and Computational Mathematics Division, National Institute of Standards and Technology, Boulder, Colorado, 80305, USA;"],"affiliations":[{"raw_affiliation_string":"Applied and Computational Mathematics Division, National Institute of Standards and Technology, Boulder, Colorado, 80305, USA;","institution_ids":["https://openalex.org/I1321296531"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5108191195","display_name":"Zachary H. Levine","orcid":null},"institutions":[{"id":"https://openalex.org/I1321296531","display_name":"National Institute of Standards and Technology","ror":"https://ror.org/05xpvk416","country_code":"US","type":"government","lineage":["https://openalex.org/I1321296531","https://openalex.org/I1343035065"]},{"id":"https://openalex.org/I4210147263","display_name":"Material Measurement Laboratory","ror":"https://ror.org/04a0y3b96","country_code":"US","type":"government","lineage":["https://openalex.org/I1321296531","https://openalex.org/I1343035065","https://openalex.org/I4210147263"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zachary H. Levine","raw_affiliation_strings":["Quantum Measurement Division, National Institute of Standards and Technol-ogy, Gaithersburg, Maryland 20899, USA"],"affiliations":[{"raw_affiliation_string":"Quantum Measurement Division, National Institute of Standards and Technol-ogy, Gaithersburg, Maryland 20899, USA","institution_ids":["https://openalex.org/I1321296531","https://openalex.org/I4210147263"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":5,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":1,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":"34","issue":"5","first_page":"202","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12386","display_name":"Advanced X-ray and CT Imaging","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11183","display_name":"Advanced X-ray Imaging Techniques","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/3108","display_name":"Radiation"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.5700485},{"id":"https://openalex.org/keywords/synthetic-data","display_name":"Synthetic data","score":0.47539175},{"id":"https://openalex.org/keywords/minification","display_name":"Minification","score":0.41747117}],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7070311},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.65896463},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5984616},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.58615994},{"id":"https://openalex.org/C57493831","wikidata":"https://www.wikidata.org/wiki/Q3134666","display_name":"Projection (relational algebra)","level":2,"score":0.5852299},{"id":"https://openalex.org/C141379421","wikidata":"https://www.wikidata.org/wiki/Q6094427","display_name":"Iterative reconstruction","level":2,"score":0.5846802},{"id":"https://openalex.org/C135252773","wikidata":"https://www.wikidata.org/wiki/Q1567213","display_name":"Inverse problem","level":2,"score":0.5808239},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.5700485},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.48410976},{"id":"https://openalex.org/C160920958","wikidata":"https://www.wikidata.org/wiki/Q7662746","display_name":"Synthetic data","level":2,"score":0.47539175},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4448003},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.428289},{"id":"https://openalex.org/C147764199","wikidata":"https://www.wikidata.org/wiki/Q6865248","display_name":"Minification","level":2,"score":0.41747117},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3723365},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.26328906},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.19424763},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.2352/ei.2022.34.5.mlsi-202","pdf_url":"https://library.imaging.org/admin/apis/public/api/ist/website/downloadArticle/ei/34/5/MLSI-202","source":{"id":"https://openalex.org/S4210227276","display_name":"Electronic Imaging","issn_l":"2470-1173","issn":["2470-1173"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.osti.gov/biblio/1905452","pdf_url":null,"source":{"id":"https://openalex.org/S4306402487","display_name":"OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I139351228","host_organization_name":"Office of Scientific and Technical Information","host_organization_lineage":["https://openalex.org/I139351228"],"host_organization_lineage_names":["Office of Scientific and Technical Information"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2111.08011","pdf_url":"https://arxiv.org/pdf/2111.08011","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.2352/ei.2022.34.5.mlsi-202","pdf_url":"https://library.imaging.org/admin/apis/public/api/ist/website/downloadArticle/ei/34/5/MLSI-202","source":{"id":"https://openalex.org/S4210227276","display_name":"Electronic Imaging","issn_l":"2470-1173","issn":["2470-1173"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1270224975","https://openalex.org/W1522301498","https://openalex.org/W1901129140","https://openalex.org/W1994906459","https://openalex.org/W2000274929","https://openalex.org/W2003999481","https://openalex.org/W2046023147","https://openalex.org/W2093231248","https://openalex.org/W2109188022","https://openalex.org/W2125389028","https://openalex.org/W2150892679","https://openalex.org/W2166887721","https://openalex.org/W2173520492","https://openalex.org/W2612085147","https://openalex.org/W2727849499","https://openalex.org/W2785678896","https://openalex.org/W2803086176","https://openalex.org/W2883672905","https://openalex.org/W2888509382","https://openalex.org/W2946690775","https://openalex.org/W2963684088","https://openalex.org/W2982486437","https://openalex.org/W3006371228","https://openalex.org/W3097065222","https://openalex.org/W3122499440","https://openalex.org/W3129306712","https://openalex.org/W3138077151","https://openalex.org/W3164442281","https://openalex.org/W3202012496","https://openalex.org/W4242353985","https://openalex.org/W4301206121"],"related_works":["https://openalex.org/W4386190339","https://openalex.org/W4376988852","https://openalex.org/W4366999383","https://openalex.org/W4296960511","https://openalex.org/W4296551294","https://openalex.org/W3101955189","https://openalex.org/W2725829804","https://openalex.org/W2580650124","https://openalex.org/W2151220638","https://openalex.org/W1928301487"],"abstract_inverted_index":{"Limited-angle":[0],"X-ray":[1,232],"tomography":[2,233],"reconstruction":[3,49,67,86,174],"is":[4,108],"an":[5],"ill-conditioned":[6],"inverse":[7],"problem":[8],"in":[9,23,84,118,229,238],"general.":[10],"Especially":[11],"when":[12,153],"the":[13,19,43,66,85,92,111,154,162,172,185,196,199,209,216,219],"projection":[14,155],"angles":[15,156],"are":[16,21,62,116,136,160],"limited":[17,230],"and":[18,38,58,79,131,157],"measurements":[20],"taken":[22],"a":[24,81,104,146],"photon-limited":[25],"condition,":[26],"reconstructions":[27],"from":[28,95,145,164,193,202],"classical":[29],"algorithms":[30],"such":[31,53],"as":[32,54],"filtered":[33],"backprojection":[34],"may":[35,234],"lose":[36],"fidelity":[37],"acquire":[39],"artifacts":[40],"due":[41],"to":[42,77,110],"missing-cone":[44],"problem.":[45],"To":[46],"obtain":[47,103],"satisfactory":[48],"results,":[50],"prior":[51,82,93,105,201],"assumptions,":[52],"total":[55],"variation":[56],"minimization":[57],"nonlocal":[59],"image":[60],"similarity,":[61],"usually":[63],"incorporated":[64],"within":[65],"algorithm.":[68],"In":[69,120],"this":[70],"work,":[71],"we":[72,115,122],"introduce":[73],"deep":[74,124,166,186],"neural":[75,89,100],"networks":[76,90],"determine":[78],"apply":[80],"distribution":[83,106],"process.":[87],"Our":[88],"learn":[91],"directly":[94],"synthetic":[96,140,177,190],"training":[97],"samples.":[98],"The":[99,224],"nets":[101],"thus":[102],"that":[107,207],"specific":[109],"class":[112],"of":[113,198,218,226],"objects":[114],"interested":[117],"reconstructing.":[119],"particular,":[121],"used":[123],"generative":[125,167,187],"models":[126,168,188],"with":[127,180,189,213],"3D":[128,132,139],"convolutional":[129],"layers":[130,134],"attention":[133],"which":[135],"trained":[137],"on":[138,176],"integrated":[141],"circuit":[142],"(IC)":[143],"data":[144,178,192],"model":[147],"dubbed":[148],"CircuitFaker.":[149],"We":[150,205],"demonstrate":[151],"that,":[152],"photon":[158],"budgets":[159],"limited,":[161],"priors":[163],"our":[165],"can":[169],"dramatically":[170],"improve":[171],"IC":[173,191],"quality":[175],"compared":[179],"maximum":[181],"likelihood":[182],"estimation.":[183],"Training":[184],"CircuitFaker":[194],"illustrates":[195],"capabilities":[197],"learned":[200],"machine":[203,220,227],"learning.":[204],"expect":[206],"if":[208],"process":[210],"were":[211],"reproduced":[212],"experimental":[214],"data,":[215],"advantage":[217],"learning":[221,228],"would":[222],"persist.":[223],"advantages":[225],"angle":[231],"further":[235],"enable":[236],"applications":[237],"low-photon":[239],"nanoscale":[240],"imaging.":[241]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3212809894","counts_by_year":[{"year":2021,"cited_by_count":1}],"updated_date":"2024-12-15T06:43:57.479664","created_date":"2021-11-22"}