{"id":"https://openalex.org/W4312555856","doi":"https://doi.org/10.2197/ipsjjip.30.718","title":"Stetho Touch: Touch Action Recognition System by Deep Learning with Stethoscope Acoustic Sensing","display_name":"Stetho Touch: Touch Action Recognition System by Deep Learning with Stethoscope Acoustic Sensing","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4312555856","doi":"https://doi.org/10.2197/ipsjjip.30.718"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.2197/ipsjjip.30.718","pdf_url":"https://www.jstage.jst.go.jp/article/ipsjjip/30/0/30_718/_pdf","source":{"id":"https://openalex.org/S4210239267","display_name":"Journal of Information Processing","issn_l":"1882-6652","issn":["1882-6652"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.jstage.jst.go.jp/article/ipsjjip/30/0/30_718/_pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5024841496","display_name":"Nagisa Masuda","orcid":null},"institutions":[{"id":"https://openalex.org/I42999171","display_name":"Sophia University","ror":"https://ror.org/01nckkm68","country_code":"JP","type":"funder","lineage":["https://openalex.org/I42999171"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Nagisa Masuda","raw_affiliation_strings":["Graduate of Faculty of Engineering, Sophia University"],"affiliations":[{"raw_affiliation_string":"Graduate of Faculty of Engineering, Sophia University","institution_ids":["https://openalex.org/I42999171"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052202375","display_name":"Koichi Furukawa","orcid":null},"institutions":[{"id":"https://openalex.org/I42999171","display_name":"Sophia University","ror":"https://ror.org/01nckkm68","country_code":"JP","type":"funder","lineage":["https://openalex.org/I42999171"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Koichi Furukawa","raw_affiliation_strings":["Graduate of Faculty of Engineering, Sophia University"],"affiliations":[{"raw_affiliation_string":"Graduate of Faculty of Engineering, Sophia University","institution_ids":["https://openalex.org/I42999171"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5028788705","display_name":"Ikuko Eguchi Yairi","orcid":"https://orcid.org/0000-0001-7522-0663"},"institutions":[{"id":"https://openalex.org/I42999171","display_name":"Sophia University","ror":"https://ror.org/01nckkm68","country_code":"JP","type":"funder","lineage":["https://openalex.org/I42999171"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Ikuko Eguchi Yairi","raw_affiliation_strings":["Graduate of Faculty of Engineering, Sophia University"],"affiliations":[{"raw_affiliation_string":"Graduate of Faculty of Engineering, Sophia University","institution_ids":["https://openalex.org/I42999171"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.306,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.498156,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":75},"biblio":{"volume":"30","issue":"0","first_page":"718","last_page":"728"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10914","display_name":"Tactile and Sensory Interactions","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10914","display_name":"Tactile and Sensory Interactions","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/stethoscope","display_name":"Stethoscope","score":0.7126204},{"id":"https://openalex.org/keywords/table","display_name":"Table (database)","score":0.46764442},{"id":"https://openalex.org/keywords/interface","display_name":"Interface (matter)","score":0.46044457}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.87865937},{"id":"https://openalex.org/C2779055095","wikidata":"https://www.wikidata.org/wiki/Q162339","display_name":"Stethoscope","level":2,"score":0.7126204},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5874606},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.48603088},{"id":"https://openalex.org/C45235069","wikidata":"https://www.wikidata.org/wiki/Q278425","display_name":"Table (database)","level":2,"score":0.46764442},{"id":"https://openalex.org/C113843644","wikidata":"https://www.wikidata.org/wiki/Q901882","display_name":"Interface (matter)","level":4,"score":0.46044457},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4307459},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.3392267},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32704967},{"id":"https://openalex.org/C24890656","wikidata":"https://www.wikidata.org/wiki/Q82811","display_name":"Acoustics","level":1,"score":0.13306803},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.1187731},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C157915830","wikidata":"https://www.wikidata.org/wiki/Q2928001","display_name":"Bubble","level":2,"score":0.0},{"id":"https://openalex.org/C129307140","wikidata":"https://www.wikidata.org/wiki/Q6795880","display_name":"Maximum bubble pressure method","level":3,"score":0.0},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.2197/ipsjjip.30.718","pdf_url":"https://www.jstage.jst.go.jp/article/ipsjjip/30/0/30_718/_pdf","source":{"id":"https://openalex.org/S4210239267","display_name":"Journal of Information Processing","issn_l":"1882-6652","issn":["1882-6652"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.2197/ipsjjip.30.718","pdf_url":"https://www.jstage.jst.go.jp/article/ipsjjip/30/0/30_718/_pdf","source":{"id":"https://openalex.org/S4210239267","display_name":"Journal of Information Processing","issn_l":"1882-6652","issn":["1882-6652"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1523493493","https://openalex.org/W1970334548","https://openalex.org/W2048207755","https://openalex.org/W2061171222","https://openalex.org/W2063812706","https://openalex.org/W2079735306","https://openalex.org/W2087361844","https://openalex.org/W2088182082","https://openalex.org/W2089198411","https://openalex.org/W2102413118","https://openalex.org/W2109018459","https://openalex.org/W2109747901","https://openalex.org/W2111424004","https://openalex.org/W2111619626","https://openalex.org/W2114667458","https://openalex.org/W2153200718","https://openalex.org/W2163097095","https://openalex.org/W2168885644","https://openalex.org/W2169709590","https://openalex.org/W2191779130","https://openalex.org/W2193303691","https://openalex.org/W2535066354","https://openalex.org/W2611427051","https://openalex.org/W2756125637","https://openalex.org/W2810474558","https://openalex.org/W2907986472","https://openalex.org/W2948490758","https://openalex.org/W2962734576","https://openalex.org/W2981207893","https://openalex.org/W2995803373","https://openalex.org/W3017361427","https://openalex.org/W3035512130","https://openalex.org/W3109713200","https://openalex.org/W3154651967","https://openalex.org/W43120215"],"related_works":["https://openalex.org/W4360585206","https://openalex.org/W4327774331","https://openalex.org/W4321369474","https://openalex.org/W4312962853","https://openalex.org/W3215138031","https://openalex.org/W3009238340","https://openalex.org/W2939353110","https://openalex.org/W2738221750","https://openalex.org/W2731899572","https://openalex.org/W2373859269"],"abstract_inverted_index":{"Developing":[0],"a":[1,22,35,41,50,59,64,109,128,164],"new":[2],"IoT":[3],"device":[4,56],"input":[5],"method":[6,113,132],"that":[7,26,117,136],"can":[8,137],"reduce":[9],"the":[10,46,80,105,153,156],"burden":[11],"on":[12],"users":[13],"has":[14],"become":[15],"an":[16,53,67],"important":[17],"issue.":[18],"This":[19],"paper":[20,103],"proposed":[21,108],"system":[23],"Stetho":[24],"Touch":[25],"identifies":[27],"touch":[28,82,110,129,160],"actions":[29,83,161],"using":[30,114,133,142],"acoustic":[31,54,115,143],"information":[32,116],"obtained":[33],"when":[34],"user's":[36],"finger":[37],"makes":[38],"contact":[39],"with":[40,84],"solid":[42],"object.":[43],"To":[44],"investigate":[45],"method,":[47],"we":[48],"implemented":[49],"prototype":[51],"of":[52,58,74,101,159],"sensing":[55],"consisting":[57],"low-pressure":[60],"melamine":[61],"veneer":[62],"table,":[63],"stethoscope,":[65],"and":[66,77,91,121,150],"audio":[68],"interface.":[69],"The":[70,99],"CNN-LSTM":[71],"classification":[72],"model":[73],"combining":[75],"CNN":[76],"LSTM":[78],"classified":[79],"five":[81],"accuracy":[85,92],"88.26%,":[86],"f-score":[87,94],"87.26%":[88],"in":[89,96,140],"LOSO":[90],"99.39,":[93],"99.39":[95],"18-fold":[97],"cross-validation.":[98],"contributions":[100],"this":[102],"are":[104],"following;":[106],"(1)":[107],"action":[111,130],"recognition":[112,131],"is":[118],"more":[119],"natural":[120],"accurate":[122],"than":[123],"existing":[124],"methods,":[125],"(2)":[126],"evaluated":[127],"Deep":[134],"Learning":[135],"be":[138],"processed":[139],"real-time":[141],"time":[144],"series":[145],"raw":[146],"data":[147],"as":[148],"input,":[149],"(3)":[151],"proved":[152],"compensations":[154],"for":[155],"user":[157],"dependence":[158],"by":[162],"providing":[163],"learning":[165,170],"phase":[166],"or":[167],"performing":[168],"sequential":[169],"during":[171],"use.":[172]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312555856","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2025-02-22T03:03:55.798655","created_date":"2023-01-05"}