{"id":"https://openalex.org/W4385807442","doi":"https://doi.org/10.21437/interspeech.2023-1441","title":"MP-SENet: A Speech Enhancement Model with Parallel Denoising of Magnitude and Phase Spectra","display_name":"MP-SENet: A Speech Enhancement Model with Parallel Denoising of Magnitude and Phase Spectra","publication_year":2023,"publication_date":"2023-08-14","ids":{"openalex":"https://openalex.org/W4385807442","doi":"https://doi.org/10.21437/interspeech.2023-1441"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.21437/interspeech.2023-1441","pdf_url":null,"source":{"id":"https://openalex.org/S4363604309","display_name":"Interspeech 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2305.13686","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072371384","display_name":"Ye-Xin Lu","orcid":"https://orcid.org/0009-0009-8026-0702"},"institutions":[{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"education","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ye-Xin Lu","raw_affiliation_strings":["National Engineering Research Center of Speech and Language Information Processing, University of Science and Technology of China, Hefei, P. R. China"],"affiliations":[{"raw_affiliation_string":"National Engineering Research Center of Speech and Language Information Processing, University of Science and Technology of China, Hefei, P. R. China","institution_ids":["https://openalex.org/I126520041"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014746276","display_name":"Yang Ai","orcid":"https://orcid.org/0009-0006-0157-4980"},"institutions":[{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"education","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yang Ai","raw_affiliation_strings":["National Engineering Research Center of Speech and Language Information Processing, University of Science and Technology of China, Hefei, P. R. China"],"affiliations":[{"raw_affiliation_string":"National Engineering Research Center of Speech and Language Information Processing, University of Science and Technology of China, Hefei, P. R. China","institution_ids":["https://openalex.org/I126520041"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5059767940","display_name":"Zhen-Hua Ling","orcid":"https://orcid.org/0000-0001-7853-5273"},"institutions":[{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"education","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhen-Hua Ling","raw_affiliation_strings":["National Engineering Research Center of Speech and Language Information Processing, University of Science and Technology of China, Hefei, P. R. China"],"affiliations":[{"raw_affiliation_string":"National Engineering Research Center of Speech and Language Information Processing, University of Science and Technology of China, Hefei, P. R. China","institution_ids":["https://openalex.org/I126520041"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.18,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":12,"citation_normalized_percentile":{"value":0.601087,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9769,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13289","display_name":"Infant Health and Development","score":0.9021,"subfield":{"id":"https://openalex.org/subfields/3611","display_name":"Pharmacy"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C126691448","wikidata":"https://www.wikidata.org/wiki/Q2028919","display_name":"Magnitude (astronomy)","level":2,"score":0.70472306},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.7023427},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5110096},{"id":"https://openalex.org/C44280652","wikidata":"https://www.wikidata.org/wiki/Q104837","display_name":"Phase (matter)","level":2,"score":0.501585},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.46473148},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.45808756},{"id":"https://openalex.org/C4839761","wikidata":"https://www.wikidata.org/wiki/Q212111","display_name":"Spectral line","level":2,"score":0.42947844},{"id":"https://openalex.org/C2776182073","wikidata":"https://www.wikidata.org/wiki/Q7575395","display_name":"Speech enhancement","level":3,"score":0.41940713},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.29255286},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.2213479},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17010969},{"id":"https://openalex.org/C44870925","wikidata":"https://www.wikidata.org/wiki/Q37547","display_name":"Astrophysics","level":1,"score":0.06589034},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.21437/interspeech.2023-1441","pdf_url":null,"source":{"id":"https://openalex.org/S4363604309","display_name":"Interspeech 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.13686","pdf_url":"https://arxiv.org/pdf/2305.13686","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.13686","pdf_url":"https://arxiv.org/pdf/2305.13686","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1677182931","https://openalex.org/W2044893557","https://openalex.org/W2070126272","https://openalex.org/W2094721231","https://openalex.org/W2291877678","https://openalex.org/W2502312327","https://openalex.org/W2603567530","https://openalex.org/W2801554275","https://openalex.org/W2908510526","https://openalex.org/W2937484199","https://openalex.org/W2940417587","https://openalex.org/W2949558265","https://openalex.org/W2991361823","https://openalex.org/W2998161426","https://openalex.org/W3015197852","https://openalex.org/W3016129867","https://openalex.org/W3097945073","https://openalex.org/W3158779859","https://openalex.org/W3197729725","https://openalex.org/W3201698955","https://openalex.org/W4221143458","https://openalex.org/W4221162870","https://openalex.org/W4232282348","https://openalex.org/W4286905522","https://openalex.org/W4287236406","https://openalex.org/W4302765731","https://openalex.org/W4372260247","https://openalex.org/W4385823093"],"related_works":["https://openalex.org/W4311345787","https://openalex.org/W3185336960","https://openalex.org/W2376418092","https://openalex.org/W2257646557","https://openalex.org/W2257644995","https://openalex.org/W2188141918","https://openalex.org/W2072983018","https://openalex.org/W2042652790","https://openalex.org/W1970662124","https://openalex.org/W1016952678"],"abstract_inverted_index":{"This":[0],"paper":[1],"proposes":[2],"MP-SENet,":[3],"a":[4,21,108],"novel":[5],"Speech":[6],"Enhancement":[7],"Network":[8],"which":[9,25],"directly":[10,60],"denoises":[11],"Magnitude":[12],"and":[13,28,46,57,65,74,90,117],"Phase":[14],"spectra":[15,64,68],"in":[16,24],"parallel.The":[17],"proposed":[18,105],"MP-SENet":[19,98,106],"adopts":[20],"codec":[22],"architecture":[23],"the":[26,42,97,113],"encoder":[27,35],"decoder":[29,49,56],"are":[30,93],"bridged":[31],"by":[32,69],"convolution-augmented":[33],"transformers.The":[34],"aims":[36],"to":[37,95],"encode":[38],"time-frequency":[39],"representations":[40],"from":[41],"input":[43],"noisy":[44],"magnitude":[45,54,63,83],"phase":[47,58,67,76,85],"spectra.The":[48],"is":[50],"composed":[51],"of":[52,110],"parallel":[53,75],"mask":[55],"decoder,":[59],"recovering":[61],"clean":[62],"clean-wrapped":[66],"incorporating":[70],"learnable":[71],"sigmoid":[72],"activation":[73],"estimation":[77],"architecture,":[78],"respectively.Multi-level":[79],"losses":[80],"defined":[81],"on":[82,112],"spectra,":[84,86,89],"short-time":[87],"complex":[88],"time-domain":[91],"waveforms":[92],"used":[94],"train":[96],"model":[99],"jointly.Experimental":[100],"results":[101],"show":[102],"that":[103],"our":[104],"achieves":[107],"PESQ":[109],"3.50":[111],"public":[114],"VoiceBank+DEMAND":[115],"dataset":[116],"outperforms":[118],"existing":[119],"advanced":[120],"speech":[121],"enhancement":[122],"methods.":[123]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385807442","counts_by_year":[{"year":2024,"cited_by_count":9}],"updated_date":"2024-12-23T04:39:23.428513","created_date":"2023-08-15"}