{"id":"https://openalex.org/W4321443815","doi":"https://doi.org/10.21105/joss.04181","title":"CVtreeMLE: Efficient Estimation of Mixed Exposures using Data Adaptive Decision Trees and Cross-Validated Targeted Maximum Likelihood Estimation in R","display_name":"CVtreeMLE: Efficient Estimation of Mixed Exposures using Data Adaptive Decision Trees and Cross-Validated Targeted Maximum Likelihood Estimation in R","publication_year":2023,"publication_date":"2023-02-21","ids":{"openalex":"https://openalex.org/W4321443815","doi":"https://doi.org/10.21105/joss.04181","pmid":"https://pubmed.ncbi.nlm.nih.gov/37398941"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.21105/joss.04181","pdf_url":"https://joss.theoj.org/papers/10.21105/joss.04181.pdf","source":{"id":"https://openalex.org/S4210214273","display_name":"The Journal of Open Source Software","issn_l":"2475-9066","issn":["2475-9066"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310315853","host_organization_name":"Open Journals","host_organization_lineage":["https://openalex.org/P4310315853"],"host_organization_lineage_names":["Open Journals"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"diamond","oa_url":"https://joss.theoj.org/papers/10.21105/joss.04181.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5079211928","display_name":"David McCoy","orcid":"https://orcid.org/0000-0002-5515-6307"},"institutions":[{"id":"https://openalex.org/I95457486","display_name":"University of California, Berkeley","ror":"https://ror.org/01an7q238","country_code":"US","type":"funder","lineage":["https://openalex.org/I95457486"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"David McCoy","raw_affiliation_strings":["Division of Environmental Health Sciences, University of California, Berkeley, CA, United States of America"],"affiliations":[{"raw_affiliation_string":"Division of Environmental Health Sciences, University of California, Berkeley, CA, United States of America","institution_ids":["https://openalex.org/I95457486"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013304554","display_name":"Alan Hubbard","orcid":"https://orcid.org/0000-0002-3769-0127"},"institutions":[{"id":"https://openalex.org/I95457486","display_name":"University of California, Berkeley","ror":"https://ror.org/01an7q238","country_code":"US","type":"funder","lineage":["https://openalex.org/I95457486"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Alan Hubbard","raw_affiliation_strings":["Department of Biostatistics, University of California, Berkeley, CA, United States of America"],"affiliations":[{"raw_affiliation_string":"Department of Biostatistics, University of California, Berkeley, CA, United States of America","institution_ids":["https://openalex.org/I95457486"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5110245357","display_name":"Mark van der Laan","orcid":null},"institutions":[{"id":"https://openalex.org/I95457486","display_name":"University of California, Berkeley","ror":"https://ror.org/01an7q238","country_code":"US","type":"funder","lineage":["https://openalex.org/I95457486"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mark Van der Laan","raw_affiliation_strings":["Department of Biostatistics, University of California, Berkeley, CA, United States of America"],"affiliations":[{"raw_affiliation_string":"Department of Biostatistics, University of California, Berkeley, CA, United States of America","institution_ids":["https://openalex.org/I95457486"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":0,"currency":"USD","value_usd":0},"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":"8","issue":"82","first_page":"4181","last_page":"4181"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T14393","display_name":"Health, Environment, Cognitive Aging","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/2307","display_name":"Health, Toxicology and Mutagenesis"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T14393","display_name":"Health, Environment, Cognitive Aging","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/2307","display_name":"Health, Toxicology and Mutagenesis"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10845","display_name":"Advanced Causal Inference Techniques","score":0.992,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9588,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.5271998},{"id":"https://openalex.org/keywords/lasso","display_name":"Lasso","score":0.4765951},{"id":"https://openalex.org/keywords/statistical-inference","display_name":"Statistical Inference","score":0.4367722}],"concepts":[{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.5271998},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.4960483},{"id":"https://openalex.org/C41587187","wikidata":"https://www.wikidata.org/wiki/Q1501882","display_name":"Generalized linear model","level":2,"score":0.49404433},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.49168807},{"id":"https://openalex.org/C163175372","wikidata":"https://www.wikidata.org/wiki/Q3339222","display_name":"Linear model","level":2,"score":0.48944655},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.487844},{"id":"https://openalex.org/C37616216","wikidata":"https://www.wikidata.org/wiki/Q3218363","display_name":"Lasso (programming language)","level":2,"score":0.4765951},{"id":"https://openalex.org/C153720581","wikidata":"https://www.wikidata.org/wiki/Q5532490","display_name":"Generalized linear mixed model","level":2,"score":0.44950876},{"id":"https://openalex.org/C134261354","wikidata":"https://www.wikidata.org/wiki/Q938438","display_name":"Statistical inference","level":2,"score":0.4367722},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.41949606},{"id":"https://openalex.org/C84525736","wikidata":"https://www.wikidata.org/wiki/Q831366","display_name":"Decision tree","level":2,"score":0.4151716},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.39861083},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3908134},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3369755},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.21105/joss.04181","pdf_url":"https://joss.theoj.org/papers/10.21105/joss.04181.pdf","source":{"id":"https://openalex.org/S4210214273","display_name":"The Journal of Open Source Software","issn_l":"2475-9066","issn":["2475-9066"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310315853","host_organization_name":"Open Journals","host_organization_lineage":["https://openalex.org/P4310315853"],"host_organization_lineage_names":["Open Journals"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312067","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"acceptedVersion","is_accepted":true,"is_published":false},{"is_oa":true,"landing_page_url":"https://escholarship.org/uc/item/2772r1t1","pdf_url":"https://escholarship.org/content/qt2772r1t1/qt2772r1t1.pdf?t=sb27lx","source":{"id":"https://openalex.org/S4306400115","display_name":"eScholarship (California Digital Library)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I2801248553","host_organization_name":"California Digital Library","host_organization_lineage":["https://openalex.org/I2801248553"],"host_organization_lineage_names":["California Digital Library"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/37398941","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.21105/joss.04181","pdf_url":"https://joss.theoj.org/papers/10.21105/joss.04181.pdf","source":{"id":"https://openalex.org/S4210214273","display_name":"The Journal of Open Source Software","issn_l":"2475-9066","issn":["2475-9066"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310315853","host_organization_name":"Open Journals","host_organization_lineage":["https://openalex.org/P4310315853"],"host_organization_lineage_names":["Open Journals"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.64,"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W2072579270","https://openalex.org/W2091249025","https://openalex.org/W2305754340","https://openalex.org/W2321635716","https://openalex.org/W2582743722","https://openalex.org/W2918173153","https://openalex.org/W3014714397","https://openalex.org/W4224950666","https://openalex.org/W4248240383","https://openalex.org/W81897278"],"related_works":["https://openalex.org/W4249888275","https://openalex.org/W4230773990","https://openalex.org/W3081465059","https://openalex.org/W2905399339","https://openalex.org/W2356286374","https://openalex.org/W1764279821","https://openalex.org/W1600050343","https://openalex.org/W1559103440","https://openalex.org/W1556631438","https://openalex.org/W1510072949"],"abstract_inverted_index":{"Statistical":[0],"causal":[1,291],"inference":[2,178,222,247,261],"of":[3,42,49,52,132,146,293],"mixed":[4,297,320],"exposures":[5,43,55,196],"has":[6],"been":[7],"limited":[8],"by":[9,17,73,82,111,197,232],"reliance":[10],"on":[11],"parametric":[12],"models":[13],"and,":[14],"until":[15],"recently,":[16],"researchers":[18,274],"considering":[19],"only":[20],"one":[21],"exposure":[22,59,298],"at":[23],"a":[24,29,33,50,57,165,173,180,190,294,312,319,329,346],"time,":[25],"usually":[26],"estimated":[27],"as":[28,68,88,102,118,186],"beta":[30],"coefficient":[31],"in":[32,56,172,200,210,241,275],"generalized":[34],"linear":[35,74],"regression":[36,70,91,122],"model":[37,158,167,317],"(GLM).":[38],"This":[39],"independent":[40,256],"assessment":[41],"poorly":[44],"estimates":[45],"the":[46,53,77,83,130,155,201,208,234,242,266,290,337],"joint":[47],"impact":[48],"collection":[51],"same":[54],"realistic":[58],"setting.":[60],"Marginal":[61],"methods":[62,86,100,116,150,184,215,252],"for":[63,161,170,179,223,288,318],"mixture":[64,99,174],"variable":[65],"selection":[66],"such":[67,87,101,117,185],"ridge/lasso":[69],"are":[71,80,109,127,135,189,225,228,305],"biased":[72,110,226,314],"assumptions":[75],"and":[76,95,138,142,175,227,244,278,340,352],"interactions":[78,171,224],"modeled":[79],"chosen":[81],"user.":[84],"Clustering":[85],"principal":[89],"component":[90],"lose":[92],"both":[93,238],"interpretability":[94],"valid":[96,177],"inference.":[97],"Newer":[98],"quantile":[103],"g-computation":[104],"(Keil":[105],"et":[106,124],"al.,":[107,125],"2020)":[108],"linear/additive":[112],"assumptions.":[113],"More":[114],"flexible":[115,157],"Bayesian":[119],"kernel":[120],"machine":[121,332],"(BKMR)(Bobb":[123],"2014)":[126],"sensitive":[128],"to":[129,159,193,219,230,237,259,284,325],"choice":[131],"tuning":[133],"parameters,":[134],"computationally":[136],"taxing":[137],"lack":[139],"an":[140,211,255],"interpretable":[141,354],"robust":[143],"summary":[144],"statistic":[145],"dose-response":[147],"relationships.":[148],"No":[149],"currently":[151],"exist":[152],"which":[153,262],"finds":[154],"best":[156,206,347],"adjust":[160],"covariates":[162,339],"while":[163],"applying":[164],"non-parametric":[166,330],"that":[168,205],"targets":[169],"delivers":[176,353],"target":[181,303],"parameter.":[182],"Non-parametric":[183],"decision":[187,217,300,349],"trees":[188,218],"useful":[191],"tool":[192],"evaluate":[194],"combined":[195],"finding":[198],"partitions":[199],"joint-exposure":[202],"(mixture)":[203],"space":[204],"explain":[207],"variance":[209],"outcome.":[212],"However,":[213],"current":[214],"using":[216,233,299],"assess":[220],"statistical":[221,246,286,331],"prone":[229],"overfitting":[231],"full":[235,267],"data":[236],"identify":[239],"nodes":[240],"tree":[243,350],"make":[245],"given":[248],"these":[249],"nodes.":[250],"Other":[251],"have":[253],"used":[254],"test":[257],"set":[258],"derive":[260],"does":[263],"not":[264],"use":[265,311],"data.":[268],"The":[269],"CVtreeMLE":[270,342],"R":[271],"package":[272],"provides":[273],"(bio)statistics,":[276],"epidemiology,":[277],"environmental":[279],"health":[280],"sciences":[281],"with":[282,328],"access":[283],"state-of-the-art":[285],"methodology":[287],"evaluating":[289],"effects":[292],"data-adaptively":[295],"determined":[296],"trees.":[301],"Our":[302],"audience":[304],"those":[306],"analysts":[307],"who":[308],"would":[309],"normally":[310],"potentially":[313],"GLM":[315],"based":[316],"exposure.":[321],"Instead,":[322],"we":[323],"hope":[324],"provide":[326],"users":[327,334],"where":[333],"simply":[335],"specify":[336],"exposures,":[338],"outcome,":[341],"then":[343],"determines":[344],"if":[345],"fitting":[348],"exists":[351],"results.":[355]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4321443815","counts_by_year":[],"updated_date":"2025-03-16T08:05:35.623423","created_date":"2023-02-22"}