{"id":"https://openalex.org/W2101449828","doi":"https://doi.org/10.18653/v1/s15-2113","title":"LLT-PolyU: Identifying Sentiment Intensity in Ironic Tweets","display_name":"LLT-PolyU: Identifying Sentiment Intensity in Ironic Tweets","publication_year":2015,"publication_date":"2015-01-01","ids":{"openalex":"https://openalex.org/W2101449828","doi":"https://doi.org/10.18653/v1/s15-2113","mag":"2101449828"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/s15-2113","pdf_url":null,"source":{"id":"https://openalex.org/S4363608670","display_name":"Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://doi.org/10.18653/v1/s15-2113","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100542973","display_name":"Hongzhi Xu","orcid":null},"institutions":[{"id":"https://openalex.org/I14243506","display_name":"Hong Kong Polytechnic University","ror":"https://ror.org/0030zas98","country_code":"HK","type":"funder","lineage":["https://openalex.org/I14243506"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Hongzhi Xu","raw_affiliation_strings":["Hong Kong Polytechnic University, Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Hong Kong Polytechnic University, Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I14243506"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059288410","display_name":"Enrico Santus","orcid":"https://orcid.org/0000-0002-7327-2731"},"institutions":[{"id":"https://openalex.org/I14243506","display_name":"Hong Kong Polytechnic University","ror":"https://ror.org/0030zas98","country_code":"HK","type":"funder","lineage":["https://openalex.org/I14243506"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Enrico Santus","raw_affiliation_strings":["Hong Kong Polytechnic University, Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Hong Kong Polytechnic University, Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I14243506"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057086193","display_name":"Anna Xenia Laszlo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Anna Laszlo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5024924150","display_name":"Chu\u2010Ren Huang","orcid":"https://orcid.org/0000-0002-8526-5520"},"institutions":[{"id":"https://openalex.org/I14243506","display_name":"Hong Kong Polytechnic University","ror":"https://ror.org/0030zas98","country_code":"HK","type":"funder","lineage":["https://openalex.org/I14243506"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Chu-Ren Huang","raw_affiliation_strings":["The Hong Kong Polytechnic University"],"affiliations":[{"raw_affiliation_string":"The Hong Kong Polytechnic University","institution_ids":["https://openalex.org/I14243506"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.343,"has_fulltext":false,"cited_by_count":17,"citation_normalized_percentile":{"value":0.772234,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"673","last_page":"678"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sarcasm","display_name":"Sarcasm","score":0.9751924},{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.61371166},{"id":"https://openalex.org/keywords/identification","display_name":"Identification","score":0.5657402},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.46553245}],"concepts":[{"id":"https://openalex.org/C2776207355","wikidata":"https://www.wikidata.org/wiki/Q191035","display_name":"Sarcasm","level":3,"score":0.9751924},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71800506},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.67905605},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6534537},{"id":"https://openalex.org/C66402592","wikidata":"https://www.wikidata.org/wiki/Q2271421","display_name":"Sentiment analysis","level":2,"score":0.61371166},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.61106336},{"id":"https://openalex.org/C2779975665","wikidata":"https://www.wikidata.org/wiki/Q131361","display_name":"Irony","level":2,"score":0.60731685},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5722375},{"id":"https://openalex.org/C84525736","wikidata":"https://www.wikidata.org/wiki/Q831366","display_name":"Decision tree","level":2,"score":0.57147163},{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.5657402},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.4918437},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.4692882},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.46553245},{"id":"https://openalex.org/C46182478","wikidata":"https://www.wikidata.org/wiki/Q7363315","display_name":"Literal and figurative language","level":2,"score":0.4539856},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.40170065},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.12480131},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10467824},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.095409274},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/s15-2113","pdf_url":null,"source":{"id":"https://openalex.org/S4363608670","display_name":"Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/s15-2113","pdf_url":null,"source":{"id":"https://openalex.org/S4363608670","display_name":"Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.68,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1543432603","https://openalex.org/W193524605","https://openalex.org/W1964926943","https://openalex.org/W1984241152","https://openalex.org/W2005624335","https://openalex.org/W2014902591","https://openalex.org/W2038721957","https://openalex.org/W2038997150","https://openalex.org/W2041400887","https://openalex.org/W2097606805","https://openalex.org/W2097726431","https://openalex.org/W2099653665","https://openalex.org/W2101217916","https://openalex.org/W2106575056","https://openalex.org/W2111975591","https://openalex.org/W2112344871","https://openalex.org/W2113702826","https://openalex.org/W2114661483","https://openalex.org/W2133990480","https://openalex.org/W2134264955","https://openalex.org/W2137527984","https://openalex.org/W2153635508","https://openalex.org/W2157961599","https://openalex.org/W2160660844","https://openalex.org/W2165044314","https://openalex.org/W2250204095","https://openalex.org/W2250489604","https://openalex.org/W2250710744","https://openalex.org/W2252154346","https://openalex.org/W2611495403","https://openalex.org/W3194034633","https://openalex.org/W594440611","https://openalex.org/W831466375"],"related_works":["https://openalex.org/W848438165","https://openalex.org/W589925897","https://openalex.org/W4389966924","https://openalex.org/W4377942442","https://openalex.org/W4311456785","https://openalex.org/W3008485937","https://openalex.org/W2565799483","https://openalex.org/W2561892072","https://openalex.org/W2085360624","https://openalex.org/W1994630074"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3,7],"describe":[4],"the":[5,18,35,61,65,70,75,86,90,103],"system":[6],"built":[8],"for":[9,85],"Task":[10],"11":[11],"of":[12,21,37,60,89,106],"SemEval2015,":[13],"which":[14],"aims":[15],"at":[16],"identifying":[17],"sentiment":[19,104],"intensity":[20,105],"figurative":[22],"language":[23],"in":[24,101],"tweets.":[25],"We":[26],"use":[27],"various":[28],"features,":[29],"including":[30],"those":[31],"specially":[32],"concerned":[33],"with":[34],"identification":[36],"irony":[38,109],"and":[39,51,110],"sarcasm.":[40,111],"The":[41,57,80,92],"features":[42],"are":[43],"evaluated":[44],"through":[45],"a":[46,52],"decision":[47],"tree":[48,71],"regression":[49,55,72,78],"model":[50,73,97],"support":[53,76],"vector":[54,77],"model.":[56,79],"experiment":[58],"result":[59],"fivecross":[62],"validation":[63],"on":[64],"training":[66],"data":[67],"shows":[68],"that":[69,95],"outperforms":[74],"former":[81],"is":[82],"therefore":[83],"used":[84],"final":[87],"evaluation":[88],"task.":[91],"results":[93],"show":[94],"our":[96],"performs":[98],"especially":[99],"well":[100],"predicting":[102],"tweets":[107],"involving":[108]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2101449828","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2016,"cited_by_count":6},{"year":2015,"cited_by_count":2}],"updated_date":"2025-03-20T22:43:14.967840","created_date":"2016-06-24"}