{"id":"https://openalex.org/W2251291723","doi":"https://doi.org/10.18653/v1/s15-2025","title":"MathLingBudapest: Concept Networks for Semantic Similarity","display_name":"MathLingBudapest: Concept Networks for Semantic Similarity","publication_year":2015,"publication_date":"2015-01-01","ids":{"openalex":"https://openalex.org/W2251291723","doi":"https://doi.org/10.18653/v1/s15-2025","mag":"2251291723"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/s15-2025","pdf_url":null,"source":{"id":"https://openalex.org/S4363608670","display_name":"Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://doi.org/10.18653/v1/s15-2025","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5029370035","display_name":"G\u00e1bor Recski","orcid":"https://orcid.org/0000-0001-5551-3100"},"institutions":[{"id":"https://openalex.org/I29770179","display_name":"Budapest University of Technology and Economics","ror":"https://ror.org/02w42ss30","country_code":"HU","type":"education","lineage":["https://openalex.org/I29770179"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"G\u00e1bor Recski","raw_affiliation_strings":[" Budapest University of Technology and Economics"],"affiliations":[{"raw_affiliation_string":" Budapest University of Technology and Economics","institution_ids":["https://openalex.org/I29770179"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018650131","display_name":"Judit \u00c1cs","orcid":"https://orcid.org/0000-0003-4918-4333"},"institutions":[{"id":"https://openalex.org/I29770179","display_name":"Budapest University of Technology and Economics","ror":"https://ror.org/02w42ss30","country_code":"HU","type":"education","lineage":["https://openalex.org/I29770179"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Judit \u00c0cs","raw_affiliation_strings":[" Budapest University of Technology and Economics"],"affiliations":[{"raw_affiliation_string":" Budapest University of Technology and Economics","institution_ids":["https://openalex.org/I29770179"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.807,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.433438,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"138","last_page":"142"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/semeval","display_name":"SemEval","score":0.7404999},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.63541}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83808005},{"id":"https://openalex.org/C130318100","wikidata":"https://www.wikidata.org/wiki/Q2268914","display_name":"Semantic similarity","level":2,"score":0.76130736},{"id":"https://openalex.org/C44572571","wikidata":"https://www.wikidata.org/wiki/Q7448970","display_name":"SemEval","level":3,"score":0.7404999},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.7081893},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.66159225},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.63541},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.6306771},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.60112834},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.59973764},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5148112},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.35657227},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.18249384},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09242895},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/s15-2025","pdf_url":null,"source":{"id":"https://openalex.org/S4363608670","display_name":"Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/s15-2025","pdf_url":null,"source":{"id":"https://openalex.org/S4363608670","display_name":"Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Quality education","score":0.77,"id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1643603727","https://openalex.org/W2026255932","https://openalex.org/W2081580037","https://openalex.org/W2097606805","https://openalex.org/W2110529160","https://openalex.org/W2159849140","https://openalex.org/W2161858513","https://openalex.org/W2251291469","https://openalex.org/W2579743941","https://openalex.org/W2760572429","https://openalex.org/W2950577311"],"related_works":["https://openalex.org/W78638240","https://openalex.org/W3116116498","https://openalex.org/W2752041471","https://openalex.org/W2516873349","https://openalex.org/W2380654781","https://openalex.org/W2252122760","https://openalex.org/W2188275805","https://openalex.org/W2176214140","https://openalex.org/W2114797768","https://openalex.org/W2105461184"],"abstract_inverted_index":{"We":[0,19,38,66],"present":[1],"our":[2,90],"approach":[3,105],"to":[4],"measuring":[5],"semantic":[6],"similarity":[7,58],"of":[8,25,35,56,99],"sentence":[9,22],"pairs":[10],"used":[11],"in":[12,81,86],"Semeval":[13],"2015":[14],"tasks":[15],"1":[16],"and":[17,30,52,77],"2.":[18],"adopt":[20],"the":[21,40,48,70,96,103],"alignment":[23],"framework":[24],"(Han":[26],"et":[27],"al.,":[28],"2013)":[29],"experiment":[31],"with":[32,44,102],"several":[33],"measures":[34],"word":[36],"similarity.":[37],"hybridize":[39],"common":[41],"vector-based":[42],"models":[43],"definition":[45],"graphs":[46],"from":[47,84],"4lang":[49],"concept":[50],"dictionary":[51],"devise":[53],"a":[54],"measure":[55],"graph":[57],"that":[59],"yields":[60],"good":[61],"results":[62],"on":[63,95],"training":[64],"data.":[65],"did":[67],"not":[68],"address":[69],"specific":[71],"challenges":[72],"posed":[73],"by":[74],"Twitter":[75],"data,":[76],"this":[78],"is":[79],"reflected":[80],"placing":[82,106],"11th":[83,107],"30":[85],"Task":[87,100],"1,":[88],"but":[89],"systems":[91],"perform":[92],"fairly":[93],"well":[94],"generic":[97],"datasets":[98],"2,":[101],"hybrid":[104],"among":[108],"78":[109],"runs.":[110]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2251291723","counts_by_year":[{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":3}],"updated_date":"2025-01-16T01:25:43.297027","created_date":"2016-06-24"}