{"id":"https://openalex.org/W2950142196","doi":"https://doi.org/10.18653/v1/p19-1567","title":"Improving Neural Conversational Models with Entropy-Based Data Filtering","display_name":"Improving Neural Conversational Models with Entropy-Based Data Filtering","publication_year":2019,"publication_date":"2019-01-01","ids":{"openalex":"https://openalex.org/W2950142196","doi":"https://doi.org/10.18653/v1/p19-1567","mag":"2950142196"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/p19-1567","pdf_url":"https://www.aclweb.org/anthology/P19-1567.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://www.aclweb.org/anthology/P19-1567.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5016775285","display_name":"Rich\u00e1rd Cs\u00e1ky","orcid":"https://orcid.org/0000-0002-0028-3982"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rich\u00e1rd Cs\u00e1ky","raw_affiliation_strings":["Department of Automation and Applied Informatics Budapest University of Technology and Economics"],"affiliations":[{"raw_affiliation_string":"Department of Automation and Applied Informatics Budapest University of Technology and Economics","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083360400","display_name":"Patrik Purgai","orcid":null},"institutions":[],"countries":[],"is_corresponding":true,"raw_author_name":"Patrik Purgai","raw_affiliation_strings":["Department of Automation and Applied Informatics Budapest University of Technology and Economics"],"affiliations":[{"raw_affiliation_string":"Department of Automation and Applied Informatics Budapest University of Technology and Economics","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5029370035","display_name":"G\u00e1bor Recski","orcid":"https://orcid.org/0000-0001-5551-3100"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"G\u00e1bor Recski","raw_affiliation_strings":["Department of Automation and Applied Informatics Budapest University of Technology and Economics"],"affiliations":[{"raw_affiliation_string":"Department of Automation and Applied Informatics Budapest University of Technology and Economics","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":["https://openalex.org/A5083360400"],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.239,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":64,"citation_normalized_percentile":{"value":0.881774,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":"5650","last_page":"5669"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12031","display_name":"Speech and dialogue systems","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.52976805},{"id":"https://openalex.org/keywords/dialog-system","display_name":"Dialog system","score":0.41495997}],"concepts":[{"id":"https://openalex.org/C173853756","wikidata":"https://www.wikidata.org/wiki/Q86915","display_name":"Dialog box","level":2,"score":0.8720585},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.82649565},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.6602601},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6227896},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.557263},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.52976805},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.47111773},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.43423635},{"id":"https://openalex.org/C190954187","wikidata":"https://www.wikidata.org/wiki/Q5270587","display_name":"Dialog system","level":3,"score":0.41495997},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.34724265},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.3257061},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/p19-1567","pdf_url":"https://www.aclweb.org/anthology/P19-1567.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1905.05471","pdf_url":"https://arxiv.org/pdf/1905.05471","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/p19-1567","pdf_url":"https://www.aclweb.org/anthology/P19-1567.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Quality education","score":0.77,"id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":91,"referenced_works":["https://openalex.org/W1511556549","https://openalex.org/W1522301498","https://openalex.org/W1591706642","https://openalex.org/W1828163288","https://openalex.org/W1905522558","https://openalex.org/W2101105183","https://openalex.org/W2125320996","https://openalex.org/W2130942839","https://openalex.org/W2133564696","https://openalex.org/W2143177362","https://openalex.org/W2157331557","https://openalex.org/W2164500538","https://openalex.org/W2328886022","https://openalex.org/W2521114121","https://openalex.org/W2559038528","https://openalex.org/W2581637843","https://openalex.org/W2584185835","https://openalex.org/W2584220694","https://openalex.org/W2586847566","https://openalex.org/W2590513900","https://openalex.org/W2605035112","https://openalex.org/W2688962481","https://openalex.org/W2734443755","https://openalex.org/W2751124354","https://openalex.org/W2752172973","https://openalex.org/W2754194354","https://openalex.org/W2759361123","https://openalex.org/W2761590056","https://openalex.org/W2766041580","https://openalex.org/W2767520549","https://openalex.org/W2769248517","https://openalex.org/W2770560304","https://openalex.org/W2771228904","https://openalex.org/W2783549597","https://openalex.org/W2806935606","https://openalex.org/W2807791032","https://openalex.org/W2884970917","https://openalex.org/W2889519671","https://openalex.org/W2890276793","https://openalex.org/W2890394457","https://openalex.org/W2890969459","https://openalex.org/W2891103209","https://openalex.org/W2891744372","https://openalex.org/W2896457183","https://openalex.org/W2898658996","https://openalex.org/W2898875342","https://openalex.org/W2916898195","https://openalex.org/W2950314731","https://openalex.org/W2950902819","https://openalex.org/W2951883832","https://openalex.org/W2951990924","https://openalex.org/W2954116503","https://openalex.org/W2962717182","https://openalex.org/W2962796276","https://openalex.org/W2962821719","https://openalex.org/W2962852262","https://openalex.org/W2962883855","https://openalex.org/W2962996309","https://openalex.org/W2963035145","https://openalex.org/W2963050684","https://openalex.org/W2963167310","https://openalex.org/W2963206148","https://openalex.org/W2963330684","https://openalex.org/W2963360026","https://openalex.org/W2963395792","https://openalex.org/W2963403868","https://openalex.org/W2963411289","https://openalex.org/W2963475460","https://openalex.org/W2963527228","https://openalex.org/W2963544536","https://openalex.org/W2963790827","https://openalex.org/W2963825865","https://openalex.org/W2963879591","https://openalex.org/W2963903950","https://openalex.org/W2963958388","https://openalex.org/W2963986868","https://openalex.org/W2964042872","https://openalex.org/W2964121744","https://openalex.org/W2964133280","https://openalex.org/W2964134121","https://openalex.org/W2964178377","https://openalex.org/W2964308564","https://openalex.org/W2964352131","https://openalex.org/W2969389652","https://openalex.org/W2972732298","https://openalex.org/W3022187094","https://openalex.org/W3099438228","https://openalex.org/W4300326073","https://openalex.org/W4302403021","https://openalex.org/W4312609624","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W48079147","https://openalex.org/W326836678","https://openalex.org/W3133893348","https://openalex.org/W2735573723","https://openalex.org/W2563921006","https://openalex.org/W2549666521","https://openalex.org/W2500779211","https://openalex.org/W2111550420","https://openalex.org/W1963944933","https://openalex.org/W1600043506"],"abstract_inverted_index":{"Current":[0],"neural":[1],"network-based":[2],"conversational":[3,122],"models":[4,26,105],"lack":[5],"diversity":[6],"and":[7,39,102],"generate":[8],"boring":[9],"responses":[10],"to":[11,24,27,110,127],"open-ended":[12],"utterances.":[13],"Priors":[14],"such":[15,40],"as":[16,124],"persona,":[17],"emotion,":[18],"or":[19,62],"topic":[20],"provide":[21],"additional":[22],"information":[23],"dialog":[25,72,104],"aid":[28],"response":[29,54],"generation,":[30],"but":[31],"annotating":[32],"a":[33,68,82],"dataset":[34],"with":[35,96],"priors":[36],"is":[37],"expensive":[38],"annotations":[41],"are":[42],"rarely":[43],"available.":[44],"While":[45],"previous":[46],"methods":[47],"for":[48],"improving":[49],"the":[50,59,63],"quality":[51,123],"of":[52,70,99],"open-domain":[53],"generation":[55],"focused":[56],"on":[57,114],"either":[58],"underlying":[60],"model":[61],"training":[64,79,113],"objective,":[65],"we":[66],"present":[67],"method":[69],"filtering":[71],"datasets":[73,115],"by":[74],"removing":[75],"generic":[76],"utterances":[77],"from":[78],"data":[80],"using":[81],"simple":[83],"entropy-based":[84],"approach":[85],"that":[86,112],"does":[87],"not":[88],"require":[89],"human":[90],"supervision.":[91],"We":[92],"conduct":[93],"extensive":[94],"experiments":[95],"different":[97],"variations":[98],"our":[100],"method,":[101],"compare":[103],"across":[106],"17":[107],"evaluation":[108],"metrics":[109],"show":[111],"filtered":[116],"this":[117],"way":[118],"results":[119],"in":[120],"better":[121],"chatbots":[125],"learn":[126],"output":[128],"more":[129],"diverse":[130],"responses.":[131]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2950142196","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":13},{"year":2022,"cited_by_count":14},{"year":2021,"cited_by_count":15},{"year":2020,"cited_by_count":19},{"year":2019,"cited_by_count":1}],"updated_date":"2025-01-19T07:01:59.107351","created_date":"2019-06-27"}