{"id":"https://openalex.org/W2949980515","doi":"https://doi.org/10.18653/v1/p19-1194","title":"Towards Fine-grained Text Sentiment Transfer","display_name":"Towards Fine-grained Text Sentiment Transfer","publication_year":2019,"publication_date":"2019-01-01","ids":{"openalex":"https://openalex.org/W2949980515","doi":"https://doi.org/10.18653/v1/p19-1194","mag":"2949980515"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/p19-1194","pdf_url":"https://www.aclweb.org/anthology/P19-1194.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://www.aclweb.org/anthology/P19-1194.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5019525050","display_name":"Fuli Luo","orcid":"https://orcid.org/0000-0002-5403-6434"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"funder","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fuli Luo","raw_affiliation_strings":["Key Lab of Computational Linguistics, Peking University"],"affiliations":[{"raw_affiliation_string":"Key Lab of Computational Linguistics, Peking University","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101953295","display_name":"Peng Li","orcid":null},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"funder","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Peng Li","raw_affiliation_strings":["Pattern Recognition Center, WeChat AI, Tencent Inc, China"],"affiliations":[{"raw_affiliation_string":"Pattern Recognition Center, WeChat AI, Tencent Inc, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063385901","display_name":"Pengcheng Yang","orcid":"https://orcid.org/0000-0001-8671-9523"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"funder","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Pengcheng Yang","raw_affiliation_strings":["Key Lab of Computational Linguistics, Peking University"],"affiliations":[{"raw_affiliation_string":"Key Lab of Computational Linguistics, Peking University","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100770462","display_name":"Jie Zhou","orcid":"https://orcid.org/0000-0002-2589-0164"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"funder","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jie Zhou","raw_affiliation_strings":["Pattern Recognition Center, WeChat AI, Tencent Inc, China"],"affiliations":[{"raw_affiliation_string":"Pattern Recognition Center, WeChat AI, Tencent Inc, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083893200","display_name":"Yutong Tan","orcid":null},"institutions":[{"id":"https://openalex.org/I25254941","display_name":"Beijing Normal University","ror":"https://ror.org/022k4wk35","country_code":"CN","type":"funder","lineage":["https://openalex.org/I25254941"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yutong Tan","raw_affiliation_strings":["Computer Science and Technology, Beijing Normal University"],"affiliations":[{"raw_affiliation_string":"Computer Science and Technology, Beijing Normal University","institution_ids":["https://openalex.org/I25254941"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021459300","display_name":"Baobao Chang","orcid":"https://orcid.org/0000-0003-2824-6750"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"funder","lineage":["https://openalex.org/I20231570"]},{"id":"https://openalex.org/I4210136793","display_name":"Peng Cheng Laboratory","ror":"https://ror.org/03qdqbt06","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210136793"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Baobao Chang","raw_affiliation_strings":["Key Lab of Computational Linguistics, Peking University","Peng Cheng Laboratory, China"],"affiliations":[{"raw_affiliation_string":"Key Lab of Computational Linguistics, Peking University","institution_ids":["https://openalex.org/I20231570"]},{"raw_affiliation_string":"Peng Cheng Laboratory, China","institution_ids":["https://openalex.org/I4210136793"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110285832","display_name":"Zhifang Sui","orcid":null},"institutions":[{"id":"https://openalex.org/I4210136793","display_name":"Peng Cheng Laboratory","ror":"https://ror.org/03qdqbt06","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210136793"]},{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"funder","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhifang Sui","raw_affiliation_strings":["Key Lab of Computational Linguistics, Peking University","Peng Cheng Laboratory, China"],"affiliations":[{"raw_affiliation_string":"Peng Cheng Laboratory, China","institution_ids":["https://openalex.org/I4210136793"]},{"raw_affiliation_string":"Key Lab of Computational Linguistics, Peking University","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101441137","display_name":"Xu Sun","orcid":"https://orcid.org/0000-0001-8241-9320"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"funder","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xu Sun","raw_affiliation_strings":["Key Lab of Computational Linguistics, Peking University"],"affiliations":[{"raw_affiliation_string":"Key Lab of Computational Linguistics, Peking University","institution_ids":["https://openalex.org/I20231570"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.046,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":39,"citation_normalized_percentile":{"value":0.886766,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11795","display_name":"Humor Studies and Applications","score":0.9818,"subfield":{"id":"https://openalex.org/subfields/3207","display_name":"Social Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.75146043},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.5505493},{"id":"https://openalex.org/keywords/polarity","display_name":"Polarity (international relations)","score":0.46603885}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.85602236},{"id":"https://openalex.org/C66402592","wikidata":"https://www.wikidata.org/wiki/Q2271421","display_name":"Sentiment analysis","level":2,"score":0.75146043},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.60764796},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6043572},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.5505493},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.5374826},{"id":"https://openalex.org/C2777361361","wikidata":"https://www.wikidata.org/wiki/Q1112585","display_name":"Polarity (international relations)","level":3,"score":0.46603885},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.42736846},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.3877096},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.2806114},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C1491633281","wikidata":"https://www.wikidata.org/wiki/Q7868","display_name":"Cell","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/p19-1194","pdf_url":"https://www.aclweb.org/anthology/P19-1194.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/p19-1194","pdf_url":"https://www.aclweb.org/anthology/P19-1194.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.51}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1832693441","https://openalex.org/W1902237438","https://openalex.org/W2095705004","https://openalex.org/W2099813784","https://openalex.org/W2101105183","https://openalex.org/W2133564696","https://openalex.org/W2581637843","https://openalex.org/W2586761003","https://openalex.org/W2612675303","https://openalex.org/W2617566453","https://openalex.org/W2740586471","https://openalex.org/W2760735658","https://openalex.org/W2798888952","https://openalex.org/W2798931235","https://openalex.org/W2799037524","https://openalex.org/W2805744755","https://openalex.org/W2888173624","https://openalex.org/W2889411261","https://openalex.org/W2914442349","https://openalex.org/W2962937198","https://openalex.org/W2963034998","https://openalex.org/W2963206679","https://openalex.org/W2963366196","https://openalex.org/W2963602293","https://openalex.org/W2963631950","https://openalex.org/W2963667126","https://openalex.org/W2963768805","https://openalex.org/W2964008635","https://openalex.org/W2964121744","https://openalex.org/W2964308564","https://openalex.org/W2965033324","https://openalex.org/W4230563027","https://openalex.org/W4298393544"],"related_works":["https://openalex.org/W4317653575","https://openalex.org/W4301373556","https://openalex.org/W3132372214","https://openalex.org/W3089396779","https://openalex.org/W3013279174","https://openalex.org/W2941935829","https://openalex.org/W2596247554","https://openalex.org/W2548633793","https://openalex.org/W2354902965","https://openalex.org/W1984947604"],"abstract_inverted_index":{"In":[0,116],"this":[1,117],"paper,":[2],"we":[3,64,104],"focus":[4],"on":[5],"the":[6,30,36,44,50,71,79,89,93,98,113,119],"task":[7,15,40,52],"of":[8,48,59,92,100],"fine-grained":[9,57],"text":[10],"sentiment":[11,26,38,45,73,90,126],"transfer":[12,39],"(FGST).":[13],"This":[14],"aims":[16],"to":[17,22,86,96,111],"revise":[18],"an":[19],"input":[20],"sequence":[21],"satisfy":[23],"a":[24,66,82,106,149],"given":[25],"intensity,":[27],"while":[28,131],"preserving":[29],"original":[31],"semantic":[32],"content.":[33],"Different":[34],"from":[35],"conventional":[37],"that":[41,141],"only":[42],"reverses":[43],"polarity":[46],"(positive/negative)":[47],"text,":[49],"FTST":[51],"requires":[53],"more":[54],"nuanced":[55],"and":[56,128,156],"control":[58,88],"sentiment.":[60],"To":[61],"remedy":[62],"this,":[63],"propose":[65,105],"novel":[67],"Seq2SentiSeq":[68],"model.":[69],"Specifically,":[70],"numeric":[72],"intensity":[74,91],"value":[75],"is":[76],"incorporated":[77],"into":[78],"decoder":[80],"via":[81],"Gaussian":[83],"kernel":[84],"layer":[85],"finely":[87],"output.":[94,137],"Moreover,":[95],"tackle":[97],"problem":[99],"lacking":[101],"parallel":[102],"data,":[103],"cycle":[107],"reinforcement":[108],"learning":[109],"algorithm":[110],"guide":[112],"model":[114],"training.":[115],"framework,":[118],"elaborately":[120],"designed":[121],"rewards":[122],"can":[123,144],"balance":[124],"both":[125,153],"transformation":[127],"content":[129],"preservation,":[130],"not":[132],"requiring":[133],"any":[134],"ground":[135],"truth":[136],"Experimental":[138],"results":[139],"show":[140],"our":[142],"approach":[143],"outperform":[145],"existing":[146],"methods":[147],"by":[148],"large":[150],"margin":[151],"in":[152],"automatic":[154],"evaluation":[155],"human":[157],"evaluation.":[158]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2949980515","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":9},{"year":2020,"cited_by_count":11},{"year":2019,"cited_by_count":3}],"updated_date":"2025-03-23T18:52:28.307907","created_date":"2019-06-27"}