{"id":"https://openalex.org/W2952307023","doi":"https://doi.org/10.18653/v1/p19-1012","title":"The (Non-)Utility of Structural Features in BiLSTM-based Dependency Parsers","display_name":"The (Non-)Utility of Structural Features in BiLSTM-based Dependency Parsers","publication_year":2019,"publication_date":"2019-01-01","ids":{"openalex":"https://openalex.org/W2952307023","doi":"https://doi.org/10.18653/v1/p19-1012","mag":"2952307023"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/p19-1012","pdf_url":"https://www.aclweb.org/anthology/P19-1012.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://www.aclweb.org/anthology/P19-1012.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037220308","display_name":"Agnieszka Fale\u0144ska","orcid":"https://orcid.org/0009-0008-3003-9658"},"institutions":[{"id":"https://openalex.org/I4210088543","display_name":"Institut f\u00fcr Informationsverarbeitung","ror":"https://ror.org/0047j9t38","country_code":"DE","type":"facility","lineage":["https://openalex.org/I4210088543"]},{"id":"https://openalex.org/I100066346","display_name":"University of Stuttgart","ror":"https://ror.org/04vnq7t77","country_code":"DE","type":"education","lineage":["https://openalex.org/I100066346"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Agnieszka Falenska","raw_affiliation_strings":["Institut f\u00fcr Maschinelle Sprachverarbeitung University of Stuttgart"],"affiliations":[{"raw_affiliation_string":"Institut f\u00fcr Maschinelle Sprachverarbeitung University of Stuttgart","institution_ids":["https://openalex.org/I4210088543","https://openalex.org/I100066346"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101531241","display_name":"Jonas Kuhn","orcid":"https://orcid.org/0000-0003-2860-5960"},"institutions":[{"id":"https://openalex.org/I4210088543","display_name":"Institut f\u00fcr Informationsverarbeitung","ror":"https://ror.org/0047j9t38","country_code":"DE","type":"facility","lineage":["https://openalex.org/I4210088543"]},{"id":"https://openalex.org/I100066346","display_name":"University of Stuttgart","ror":"https://ror.org/04vnq7t77","country_code":"DE","type":"education","lineage":["https://openalex.org/I100066346"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Jonas Kuhn","raw_affiliation_strings":["Institut f\u00fcr Maschinelle Sprachverarbeitung University of Stuttgart"],"affiliations":[{"raw_affiliation_string":"Institut f\u00fcr Maschinelle Sprachverarbeitung University of Stuttgart","institution_ids":["https://openalex.org/I4210088543","https://openalex.org/I100066346"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.372,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":23,"citation_normalized_percentile":{"value":0.836753,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":null,"issue":null,"first_page":"117","last_page":"128"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/information-flow","display_name":"Information flow","score":0.55533564},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.48766887},{"id":"https://openalex.org/keywords/dependency-graph","display_name":"Dependency graph","score":0.41809773},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.41695428}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8692702},{"id":"https://openalex.org/C19768560","wikidata":"https://www.wikidata.org/wiki/Q320727","display_name":"Dependency (UML)","level":2,"score":0.78181076},{"id":"https://openalex.org/C186644900","wikidata":"https://www.wikidata.org/wiki/Q194152","display_name":"Parsing","level":2,"score":0.6897484},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.6222157},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5727867},{"id":"https://openalex.org/C2779136372","wikidata":"https://www.wikidata.org/wiki/Q10283002","display_name":"Information flow","level":2,"score":0.55533564},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.48766887},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.45791948},{"id":"https://openalex.org/C16311509","wikidata":"https://www.wikidata.org/wiki/Q4148050","display_name":"Dependency graph","level":3,"score":0.41809773},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.41695428},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.4063275},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.39406478},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/p19-1012","pdf_url":"https://www.aclweb.org/anthology/P19-1012.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1905.12676","pdf_url":"https://arxiv.org/pdf/1905.12676","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/p19-1012","pdf_url":"https://www.aclweb.org/anthology/P19-1012.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.61}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1491975949","https://openalex.org/W194033037","https://openalex.org/W2030904529","https://openalex.org/W2052449326","https://openalex.org/W2063524507","https://openalex.org/W2064675550","https://openalex.org/W2079735306","https://openalex.org/W2108161779","https://openalex.org/W2114887620","https://openalex.org/W2116410915","https://openalex.org/W2131395877","https://openalex.org/W2134036914","https://openalex.org/W2187846127","https://openalex.org/W2250471514","https://openalex.org/W2250861254","https://openalex.org/W2301095666","https://openalex.org/W2400893829","https://openalex.org/W2512597464","https://openalex.org/W2549835527","https://openalex.org/W2552110825","https://openalex.org/W2563574619","https://openalex.org/W2577255746","https://openalex.org/W2579343286","https://openalex.org/W2740285126","https://openalex.org/W2740840489","https://openalex.org/W2794509261","https://openalex.org/W2798727047","https://openalex.org/W2799094457","https://openalex.org/W2799124508","https://openalex.org/W2889197485","https://openalex.org/W2897739530","https://openalex.org/W2916350893","https://openalex.org/W2949952998","https://openalex.org/W2950415592","https://openalex.org/W2963135511","https://openalex.org/W2963330800","https://openalex.org/W2963571341","https://openalex.org/W2963651521","https://openalex.org/W2964204621","https://openalex.org/W2964310805","https://openalex.org/W2988304195","https://openalex.org/W4300455941"],"related_works":["https://openalex.org/W4288558800","https://openalex.org/W2968543375","https://openalex.org/W2953770453","https://openalex.org/W2888625260","https://openalex.org/W2430210575","https://openalex.org/W2327631927","https://openalex.org/W2098784136","https://openalex.org/W2093568763","https://openalex.org/W2003096546","https://openalex.org/W1985166372"],"abstract_inverted_index":{"Classical":[0],"non-neural":[1],"dependency":[2,31],"parsers":[3,108],"put":[4],"considerable":[5],"effort":[6],"on":[7],"the":[8,30,45,55,62,80,101,107,119,127],"design":[9],"of":[10],"feature":[11],"functions.":[12],"Especially,":[13],"they":[14],"benefit":[15],"from":[16,19,26,74,105],"information":[17,43,90,103],"coming":[18],"structural":[20,46,59,120],"features,":[21],"such":[22],"as":[23],"features":[24,72],"drawn":[25,73],"neighboring":[27],"tokens":[28],"in":[29,92,126],"tree.":[32],"In":[33,48],"contrast,":[34],"their":[35,110,133],"BiLSTM-based":[36],"successors":[37],"achieve":[38],"state-of-the-art":[39],"performance":[40],"without":[41],"explicit":[42],"about":[44],"context.":[47],"this":[49],"paper":[50],"we":[51,116],"aim":[52],"to":[53,66,98],"answer":[54],"question:":[56],"How":[57],"much":[58],"context":[60,121],"are":[61,82],"BiLSTM":[63],"representations":[64],"able":[65],"capture":[67],"implicitly?":[68],"We":[69,84],"show":[70],"that":[71,118],"partial":[75],"subtrees":[76],"become":[77],"redundant":[78],"when":[79,106],"BiLSTMs":[81],"used.":[83],"provide":[85],"a":[86],"deep":[87],"insight":[88],"into":[89],"flow":[91],"transition-":[93],"and":[94],"graph-based":[95],"neural":[96],"architectures":[97],"demonstrate":[99,117],"where":[100],"implicit":[102],"comes":[104],"make":[109],"decisions.":[111],"Finally,":[112],"with":[113],"model":[114],"ablations":[115],"is":[122],"not":[123],"only":[124],"present":[125],"models,":[128],"but":[129],"it":[130],"significantly":[131],"influences":[132],"performance.":[134]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2952307023","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":6},{"year":2020,"cited_by_count":10},{"year":2019,"cited_by_count":2}],"updated_date":"2025-01-09T03:55:52.288141","created_date":"2019-06-27"}