{"id":"https://openalex.org/W2963386237","doi":"https://doi.org/10.18653/v1/d18-1373","title":"LRMM: Learning to Recommend with Missing Modalities","display_name":"LRMM: Learning to Recommend with Missing Modalities","publication_year":2018,"publication_date":"2018-01-01","ids":{"openalex":"https://openalex.org/W2963386237","doi":"https://doi.org/10.18653/v1/d18-1373","mag":"2963386237"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/d18-1373","pdf_url":"https://www.aclweb.org/anthology/D18-1373.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://www.aclweb.org/anthology/D18-1373.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100417007","display_name":"Cheng Wang","orcid":"https://orcid.org/0000-0002-4752-0316"},"institutions":[{"id":"https://openalex.org/I4210089015","display_name":"Sharp Laboratories of Europe (United Kingdom)","ror":"https://ror.org/0075mfb88","country_code":"GB","type":"company","lineage":["https://openalex.org/I4210089015"]},{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"funder","lineage":["https://openalex.org/I889458895"]}],"countries":["GB","HK"],"is_corresponding":false,"raw_author_name":"Cheng Wang","raw_affiliation_strings":["NEC Laboratories Europe","The University of Hong Kong"],"affiliations":[{"raw_affiliation_string":"NEC Laboratories Europe","institution_ids":["https://openalex.org/I4210089015","https://openalex.org/I4210089015"]},{"raw_affiliation_string":"The University of Hong Kong","institution_ids":["https://openalex.org/I889458895"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031719069","display_name":"Mathias Niepert","orcid":"https://orcid.org/0000-0002-8401-3751"},"institutions":[{"id":"https://openalex.org/I4210089015","display_name":"Sharp Laboratories of Europe (United Kingdom)","ror":"https://ror.org/0075mfb88","country_code":"GB","type":"company","lineage":["https://openalex.org/I4210089015"]},{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"funder","lineage":["https://openalex.org/I889458895"]}],"countries":["GB","HK"],"is_corresponding":false,"raw_author_name":"Mathias Niepert","raw_affiliation_strings":["NEC Laboratories Europe","The University of Hong Kong"],"affiliations":[{"raw_affiliation_string":"NEC Laboratories Europe","institution_ids":["https://openalex.org/I4210089015","https://openalex.org/I4210089015"]},{"raw_affiliation_string":"The University of Hong Kong","institution_ids":["https://openalex.org/I889458895"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100423840","display_name":"Hui Li","orcid":"https://orcid.org/0000-0001-9139-3855"},"institutions":[{"id":"https://openalex.org/I4210089015","display_name":"Sharp Laboratories of Europe (United Kingdom)","ror":"https://ror.org/0075mfb88","country_code":"GB","type":"company","lineage":["https://openalex.org/I4210089015"]},{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"funder","lineage":["https://openalex.org/I889458895"]}],"countries":["GB","HK"],"is_corresponding":false,"raw_author_name":"Hui Li","raw_affiliation_strings":["NEC Laboratories Europe","The University of Hong Kong"],"affiliations":[{"raw_affiliation_string":"NEC Laboratories Europe","institution_ids":["https://openalex.org/I4210089015","https://openalex.org/I4210089015"]},{"raw_affiliation_string":"The University of Hong Kong","institution_ids":["https://openalex.org/I889458895"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.558,"has_fulltext":false,"cited_by_count":30,"citation_normalized_percentile":{"value":0.933054,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9797,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/modalities","display_name":"Modalities","score":0.9001235},{"id":"https://openalex.org/keywords/dropout","display_name":"Dropout (neural networks)","score":0.7630038},{"id":"https://openalex.org/keywords/modality","display_name":"Modality (human\u2013computer interaction)","score":0.7580687},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.723155},{"id":"https://openalex.org/keywords/multimodal-learning","display_name":"Multimodal learning","score":0.5375829}],"concepts":[{"id":"https://openalex.org/C2779903281","wikidata":"https://www.wikidata.org/wiki/Q6888026","display_name":"Modalities","level":2,"score":0.9001235},{"id":"https://openalex.org/C2776145597","wikidata":"https://www.wikidata.org/wiki/Q25339462","display_name":"Dropout (neural networks)","level":2,"score":0.7630038},{"id":"https://openalex.org/C2780226545","wikidata":"https://www.wikidata.org/wiki/Q6888030","display_name":"Modality (human\u2013computer interaction)","level":2,"score":0.7580687},{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.7554325},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.750687},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.723155},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6514657},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.56459534},{"id":"https://openalex.org/C2780660688","wikidata":"https://www.wikidata.org/wiki/Q25052564","display_name":"Multimodal learning","level":2,"score":0.5375829},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4832707},{"id":"https://openalex.org/C557471498","wikidata":"https://www.wikidata.org/wiki/Q554950","display_name":"Recommender system","level":2,"score":0.4661891},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/d18-1373","pdf_url":"https://www.aclweb.org/anthology/D18-1373.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1808.06791","pdf_url":"https://arxiv.org/pdf/1808.06791","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/d18-1373","pdf_url":"https://www.aclweb.org/anthology/D18-1373.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.58}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":75,"referenced_works":["https://openalex.org/W1530276735","https://openalex.org/W1720514416","https://openalex.org/W1880262756","https://openalex.org/W1994156358","https://openalex.org/W1994389483","https://openalex.org/W2008886893","https://openalex.org/W2027731328","https://openalex.org/W2028988057","https://openalex.org/W2036254771","https://openalex.org/W2050096199","https://openalex.org/W2054141820","https://openalex.org/W2061873838","https://openalex.org/W2064675550","https://openalex.org/W2095705004","https://openalex.org/W2099866409","https://openalex.org/W2104083296","https://openalex.org/W2115568497","https://openalex.org/W2116206254","https://openalex.org/W2117539524","https://openalex.org/W2125930537","https://openalex.org/W2135029798","https://openalex.org/W2135790056","https://openalex.org/W2137245235","https://openalex.org/W2147800946","https://openalex.org/W2148292526","https://openalex.org/W2151052953","https://openalex.org/W2153579005","https://openalex.org/W2157881433","https://openalex.org/W2158515176","https://openalex.org/W2163605009","https://openalex.org/W2164587673","https://openalex.org/W2165698076","https://openalex.org/W2184188583","https://openalex.org/W2187089797","https://openalex.org/W2194775991","https://openalex.org/W2252022287","https://openalex.org/W2291115585","https://openalex.org/W2314598940","https://openalex.org/W2336920772","https://openalex.org/W2340502990","https://openalex.org/W2395579298","https://openalex.org/W2409498980","https://openalex.org/W2548339725","https://openalex.org/W2565916576","https://openalex.org/W2573167395","https://openalex.org/W2575006718","https://openalex.org/W2583875861","https://openalex.org/W2590953969","https://openalex.org/W2605350416","https://openalex.org/W2606749808","https://openalex.org/W2618063639","https://openalex.org/W2621577299","https://openalex.org/W2739273093","https://openalex.org/W2739992143","https://openalex.org/W2740167620","https://openalex.org/W2740920897","https://openalex.org/W2741295496","https://openalex.org/W2749348810","https://openalex.org/W2753686090","https://openalex.org/W2767980859","https://openalex.org/W2786408528","https://openalex.org/W2788376297","https://openalex.org/W2801271919","https://openalex.org/W2908054697","https://openalex.org/W2963504252","https://openalex.org/W2964273061","https://openalex.org/W3098649723","https://openalex.org/W3102701984","https://openalex.org/W3102895136","https://openalex.org/W3104406051","https://openalex.org/W3122507327","https://openalex.org/W4231510805","https://openalex.org/W4294170691","https://openalex.org/W4295150927","https://openalex.org/W6908809"],"related_works":["https://openalex.org/W4297051394","https://openalex.org/W4226301246","https://openalex.org/W3131327266","https://openalex.org/W3013693939","https://openalex.org/W2970845521","https://openalex.org/W2803255133","https://openalex.org/W2752972570","https://openalex.org/W2734887215","https://openalex.org/W2566616303","https://openalex.org/W2159052453"],"abstract_inverted_index":{"Multimodal":[0],"learning":[1,42],"has":[2],"shown":[3],"promising":[4],"performance":[5,111],"in":[6,41,125],"content-based":[7],"recommendation":[8,44],"due":[9],"to":[10,90,122],"the":[11,26,64,73,129],"auxiliary":[12],"user":[13],"and":[14,23,30,36,84,96,128],"item":[15],"information":[16],"of":[17,28,66,76],"multiple":[18],"modalities":[19,68],"such":[20],"as":[21],"text":[22],"images.":[24],"However,":[25],"problem":[27,65,75],"incomplete":[29],"missing":[31,47,67,98],"modality":[32,81],"is":[33,119],"rarely":[34],"explored":[35],"most":[37],"existing":[38],"methods":[39,124],"fail":[40],"a":[43,57,85],"model":[45],"with":[46],"or":[48],"corrupted":[49],"modalities.":[50,99],"In":[51],"this":[52],"paper,":[53],"we":[54],"propose":[55,80],"LRMM,":[56],"novel":[58],"framework":[59],"that":[60,107],"mitigates":[61],"not":[62],"only":[63],"but":[69],"also":[70],"more":[71,120],"generally":[72],"cold-start":[74,130],"recommender":[77],"systems.":[78],"We":[79],"dropout":[82],"(m-drop)":[83],"multimodal":[86,92],"sequential":[87],"autoencoder":[88],"(m-auto)":[89],"learn":[91],"representations":[93],"for":[94],"complementing":[95],"imputing":[97],"Extensive":[100],"experiments":[101],"on":[102,112],"real-world":[103],"Amazon":[104],"data":[105],"show":[106],"LRMM":[108,118],"achieves":[109],"state-of-the-art":[110],"rating":[113],"prediction":[114],"tasks.":[115],"More":[116],"importantly,":[117],"robust":[121],"previous":[123],"alleviating":[126],"data-sparsity":[127],"problem.":[131]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963386237","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":7},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":5}],"updated_date":"2025-03-18T16:13:02.598329","created_date":"2019-07-30"}