{"id":"https://openalex.org/W2891965921","doi":"https://doi.org/10.18653/v1/d18-1083","title":"Improving Reinforcement Learning Based Image Captioning with Natural Language Prior","display_name":"Improving Reinforcement Learning Based Image Captioning with Natural Language Prior","publication_year":2018,"publication_date":"2018-01-01","ids":{"openalex":"https://openalex.org/W2891965921","doi":"https://doi.org/10.18653/v1/d18-1083","mag":"2891965921"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/d18-1083","pdf_url":"https://www.aclweb.org/anthology/D18-1083.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://www.aclweb.org/anthology/D18-1083.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5000013167","display_name":"Tszhang Guo","orcid":null},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"funder","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tszhang Guo","raw_affiliation_strings":["Mobile Internet Group, Tencent"],"affiliations":[{"raw_affiliation_string":"Mobile Internet Group, Tencent","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5112248869","display_name":"Shiyu Chang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shiyu Chang","raw_affiliation_strings":["MIT-IBM Watson AI Lab, IBM Research"],"affiliations":[{"raw_affiliation_string":"MIT-IBM Watson AI Lab, IBM Research","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101583277","display_name":"Mo Yu","orcid":"https://orcid.org/0000-0003-0949-6113"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mo Yu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5102906188","display_name":"Kun Bai","orcid":"https://orcid.org/0000-0002-3773-5364"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"funder","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kun Bai","raw_affiliation_strings":["MIT-IBM Watson AI Lab, IBM Research","Mobile Internet Group, Tencent"],"affiliations":[{"raw_affiliation_string":"Mobile Internet Group, Tencent","institution_ids":["https://openalex.org/I2250653659"]},{"raw_affiliation_string":"MIT-IBM Watson AI Lab, IBM Research","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.563,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":12,"citation_normalized_percentile":{"value":0.706177,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":null,"issue":null,"first_page":"751","last_page":"756"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9904,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/closed-captioning","display_name":"Closed captioning","score":0.93167704},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.47002387}],"concepts":[{"id":"https://openalex.org/C157657479","wikidata":"https://www.wikidata.org/wiki/Q2367247","display_name":"Closed captioning","level":3,"score":0.93167704},{"id":"https://openalex.org/C2778143727","wikidata":"https://www.wikidata.org/wiki/Q1820650","display_name":"Readability","level":2,"score":0.9085587},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.8279923},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8052221},{"id":"https://openalex.org/C195324797","wikidata":"https://www.wikidata.org/wiki/Q33742","display_name":"Natural language","level":2,"score":0.64565766},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6085963},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.58142143},{"id":"https://openalex.org/C2780586882","wikidata":"https://www.wikidata.org/wiki/Q7520643","display_name":"Simple (philosophy)","level":2,"score":0.5426396},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.49894953},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.49031046},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.47002387},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.43175638},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.40386438},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.1083194},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/d18-1083","pdf_url":"https://www.aclweb.org/anthology/D18-1083.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1809.06227","pdf_url":"https://arxiv.org/pdf/1809.06227","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/d18-1083","pdf_url":"https://www.aclweb.org/anthology/D18-1083.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Quality education","id":"https://metadata.un.org/sdg/4","score":0.76}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W1514535095","https://openalex.org/W1522301498","https://openalex.org/W1889081078","https://openalex.org/W1895577753","https://openalex.org/W1897761818","https://openalex.org/W1934041838","https://openalex.org/W1956340063","https://openalex.org/W2064675550","https://openalex.org/W2066134726","https://openalex.org/W2101105183","https://openalex.org/W2119717200","https://openalex.org/W2123301721","https://openalex.org/W2154652894","https://openalex.org/W2164700406","https://openalex.org/W2176263492","https://openalex.org/W2194775991","https://openalex.org/W2481240925","https://openalex.org/W2552161745","https://openalex.org/W2565378226","https://openalex.org/W2575842049","https://openalex.org/W2604178507","https://openalex.org/W2607151106","https://openalex.org/W2612675303","https://openalex.org/W2962968835","https://openalex.org/W2963084599","https://openalex.org/W2963248296","https://openalex.org/W2963649796","https://openalex.org/W2964121744","https://openalex.org/W4214717370","https://openalex.org/W4294294142"],"related_works":["https://openalex.org/W4388002133","https://openalex.org/W4290852288","https://openalex.org/W4254960163","https://openalex.org/W4210416330","https://openalex.org/W3110264473","https://openalex.org/W3088136942","https://openalex.org/W3009270862","https://openalex.org/W2949362007","https://openalex.org/W2775506363","https://openalex.org/W1964661231"],"abstract_inverted_index":{"Recently,":[0],"Reinforcement":[1],"Learning":[2],"(RL)":[3],"approaches":[4],"have":[5],"demonstrated":[6],"advanced":[7],"performance":[8],"in":[9,83],"image":[10],"captioning":[11],"by":[12],"directly":[13],"optimizing":[14],"the":[15,29,36,56,74,112,115],"metric":[16],"used":[17],"for":[18],"testing.":[19],"However,":[20],"this":[21],"shaped":[22],"reward":[23],"introduces":[24],"learning":[25],"biases,":[26],"which":[27],"reduces":[28],"readability":[30,87],"of":[31,85,90,114],"generated":[32],"text.":[33],"In":[34],"addition,":[35],"large":[37],"sample":[38],"space":[39,58],"makes":[40],"training":[41],"unstable":[42],"and":[43,65,88,103],"slow.To":[44],"alleviate":[45],"these":[46],"issues,":[47],"we":[48],"propose":[49],"a":[50],"simple":[51,75],"coherent":[52],"solution":[53],"that":[54,71,96],"constrains":[55],"action":[57],"using":[59],"an":[60],"n-gram":[61],"language":[62],"prior.":[63],"Quantitative":[64],"qualitative":[66],"evaluations":[67],"on":[68],"benchmarks":[69],"show":[70,95],"RL":[72],"with":[73],"add-on":[76],"module":[77],"performs":[78],"favorably":[79],"against":[80],"its":[81],"counterpart":[82],"terms":[84],"both":[86],"speed":[89],"convergence.":[91],"Human":[92],"evaluation":[93],"results":[94],"our":[97],"model":[98],"is":[99],"more":[100],"human":[101],"readable":[102],"graceful.":[104],"The":[105],"implementation":[106],"will":[107],"become":[108],"publicly":[109],"available":[110],"upon":[111],"acceptance":[113],"paper.":[116]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2891965921","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":4}],"updated_date":"2025-03-15T17:06:51.879477","created_date":"2018-09-27"}